Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations
暂无分享,去创建一个
Lili Ju | Wei Leng | Xinfeng Liu | L. Ju | Xinfeng Liu | W. Leng
[1] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[2] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[3] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[4] A. Jameson,et al. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .
[5] Jian Zhang,et al. Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations , 2015, J. Sci. Comput..
[6] Qing Nie,et al. Compact integration factor methods for complex domains and adaptive mesh refinement , 2010, J. Comput. Phys..
[7] Jie Shen,et al. Efficient Spectral Sparse Grid Methods and Applications to High-Dimensional Elliptic Problems , 2010, SIAM J. Sci. Comput..
[8] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[9] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[10] Qiang Du,et al. Analysis and Applications of the Exponential Time Differencing Schemes and Their Contour Integration Modifications , 2005 .
[11] Yong-Tao Zhang,et al. Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods , 2011, J. Comput. Phys..
[12] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[13] Bruce A. Wade,et al. An ETD Crank‐Nicolson method for reaction‐diffusion systems , 2012 .
[14] S. Krogstad. Generalized integrating factor methods for stiff PDEs , 2005 .
[15] C. Loan. Computational Frameworks for the Fast Fourier Transform , 1992 .
[16] R. LeVeque. Numerical methods for conservation laws , 1990 .
[17] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[18] E. Brigham,et al. The fast Fourier transform and its applications , 1988 .
[19] H. Kreiss,et al. Time-Dependent Problems and Difference Methods , 1996 .
[20] Qing Nie,et al. Efficient semi-implicit schemes for stiff systems , 2006, J. Comput. Phys..
[21] Lloyd N. Trefethen,et al. Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..
[22] Qing Nie,et al. A compact finite difference method for reaction–diffusion problems using compact integration factor methods in high spatial dimensions , 2008, Advances in Difference Equations.
[23] Qiang Du,et al. STABILITY ANALYSIS AND APPLICATION OF THE EXPONENTIAL TIME DIFFERENCING SCHEMES 1) , 2004 .
[24] Su Zhao,et al. Operator splitting implicit integration factor methods for stiff reaction-diffusion-advection systems , 2011, J. Comput. Phys..
[25] A. Wiegmann. Fast Poisson, Fast Helmholtz and fast linear elastostatic solvers on rectangular parallelepipeds - eScholarship , 1999 .
[26] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.