Global Identifiability of Differential Models

Many real-world processes and phenomena are modeled using systems of ordinary differential equations with parameters. Given such a system, we say that a parameter is globally identifiable if it can be uniquely recovered from input and output data. The main contribution of this paper is to provide the theory, an algorithm, and software for deciding global identifiability. First, we rigorously derive an algebraic criterion for global identifiability (this is an analytic property), which yields a deterministic algorithm. Second, we improve the efficiency by randomizing the algorithm while guaranteeing probability of correctness.

[1]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[2]  Jonathan D. Hauenstein,et al.  Numerically Solving Polynomial Systems with Bertini , 2013, Software, environments, tools.

[3]  Johan Karlsson,et al.  Minimal output sets for identifiability. , 2012, Mathematical biosciences.

[4]  E. Walter,et al.  Global approaches to identifiability testing for linear and nonlinear state space models , 1982 .

[5]  Claudio Cobelli,et al.  Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.

[6]  Eva Balsa-Canto,et al.  GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models , 2017, Bioinform..

[7]  Seth Sullivant,et al.  Algebraic Tools for the Analysis of State Space Models , 2016, 1609.07985.

[8]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[9]  Eric Walter,et al.  On the identifiability and distinguishability of nonlinear parametric models , 1996 .

[10]  Maria Pia Saccomani,et al.  DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..

[11]  C. Cobelli,et al.  On parameter and structural identifiability: Nonunique observability/reconstructibility for identifiable systems, other ambiguities, and new definitions , 1980 .

[12]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[13]  Fabrice Rouillier,et al.  Solving parametric polynomial systems , 2004, J. Symb. Comput..

[14]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[15]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[16]  Maria Pia Saccomani,et al.  Parameter identifiability of nonlinear systems: the role of initial conditions , 2003, Autom..

[17]  I. Kaplansky An introduction to differential algebra , 1957 .

[18]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[19]  Maria Pia Saccomani,et al.  Examples of Testing Global Identifiability with the DAISY Software , 2009 .

[20]  Éric Schost,et al.  Complexity results for triangular sets , 2003, J. Symb. Comput..

[21]  Chee-Keng Yap,et al.  SIAN: software for structural identifiability analysis of ODE models , 2018, Bioinform..

[22]  H P Wynn,et al.  Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences. , 2001, Mathematical biosciences.

[23]  Brad M. Ochocki,et al.  Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity. , 2016, Journal of theoretical biology.

[24]  S. Vajda,et al.  Structural identifiability of dynamical systems , 1983 .

[25]  Eva Balsa-Canto,et al.  An iterative identification procedure for dynamic modeling of biochemical networks , 2010, BMC Systems Biology.

[26]  E. Hille,et al.  Ordinary di?erential equations in the complex domain , 1976 .

[27]  Éric Schost,et al.  Sharp estimates for triangular sets , 2004, ISSAC '04.

[28]  Eva Balsa-Canto,et al.  Bioinformatics Applications Note Systems Biology Genssi: a Software Toolbox for Structural Identifiability Analysis of Biological Models , 2022 .

[29]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems , 2001, SNSC.

[30]  Johan Karlsson,et al.  Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..

[31]  S. Demignot,et al.  Effect of prosthetic sugar groups on the pharmacokinetics of glucose-oxidase. , 1987, Drug design and delivery.

[32]  L. D'Angio,et al.  A new differential algebra algorithm to test identifiability of nonlinear systems with given initial conditions , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[33]  I. Shafarevich Divisors and Differential Forms , 2013 .

[34]  S. Vajda,et al.  IDENTIFIABILITY OF POLYNOMIAL SYSTEMS: STRUCTURAL AND NUMERICAL ASPECTS , 1987 .

[35]  Andy R. Magid,et al.  Lectures on differential Galois theory , 1994 .

[36]  A. Neeman Algebraic and analytic geometry , 2007 .

[37]  Marek Kimmel,et al.  Mathematical model of NF- κB regulatory module , 2004 .

[38]  Johan Karlsson,et al.  An Efficient Method for Structural Identifiability Analysis of Large Dynamic Systems , 2012 .

[39]  Volker Scheidemann Introduction to Complex Analysis in Several Variables , 2005, Compact Textbooks in Mathematics.

[40]  M.P. Saccomani,et al.  DAISY: An efficient tool to test global identifiability. Some case studies , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[41]  Y. Lecourtier,et al.  Comments on "On parameter and structural identifiablility: Nonunique observability/reconstructibility for identifiable systems, other ambiguities, and new definitions" , 1981 .

[42]  Maria Pia Saccomani,et al.  Examples of testing global identifiability of biological and biomedical models with the DAISY software , 2010, Comput. Biol. Medicine.

[43]  Antonis Papachristodoulou,et al.  Structural Identifiability of Dynamic Systems Biology Models , 2016, PLoS Comput. Biol..

[44]  Alexandre Sedoglavic A Probabilistic Algorithm to Test Local Algebraic Observability in Polynomial Time , 2002, J. Symb. Comput..

[45]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[46]  H. Pohjanpalo System identifiability based on the power series expansion of the solution , 1978 .

[47]  S. Vajda,et al.  Structural Identifiability of Linear, Bilinear, Polynomial and Rational Systems , 1984 .

[48]  David Marker,et al.  Model Theory of Differential Fields , 2000 .

[49]  Frédéric Mangolte Algebraic Varieties , 2020, Springer Monographs in Mathematics.

[50]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[51]  Arild Thowsen,et al.  Structural identifiability , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[52]  Nicolette Meshkat,et al.  On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation , 2014, PloS one.

[53]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[54]  Carsten Conradi,et al.  Dynamics of Posttranslational Modification Systems: Recent Progress and Future Directions. , 2017, Biophysical journal.

[55]  D. Mumford The red book of varieties and schemes , 1988 .

[56]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[57]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[58]  Carsten Conradi,et al.  Dynamics of Posttranslational Modification Systems: Recent Progress and Future Directions. , 2017, Biophysical journal.