CTCF Binding Polarity Determines Chromatin Looping.

[1]  K Rippe,et al.  Action at a distance: DNA-looping and initiation of transcription. , 1995, Trends in biochemical sciences.

[2]  Clifford S. Deutschman,et al.  Transcription , 2003, The Quran: Word List (Volume 3).

[3]  N. Galjart,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2007, Genes & development.

[4]  Wouter de Laat,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2006, Genes & development.

[5]  Michael Q. Zhang,et al.  Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome , 2007, Cell.

[6]  N. Galjart,et al.  CTCF regulates cell cycle progression of αβ T cells in the thymus , 2008, The EMBO journal.

[7]  H. Aburatani,et al.  Cohesin mediates transcriptional insulation by CCCTC-binding factor , 2008, Nature.

[8]  Stephan Sauer,et al.  Cohesins Functionally Associate with CTCF on Mammalian Chromosome Arms , 2008, Cell.

[9]  J. Leeuw,et al.  Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods , 2009 .

[10]  P. Fraser,et al.  Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus , 2009, Nature.

[11]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[12]  Chee Seng Chan,et al.  CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells , 2011, Nature Genetics.

[13]  A. Tanay,et al.  Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture , 2011, Nature Genetics.

[14]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[15]  Elzo de Wit,et al.  Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. , 2012, Methods.

[16]  Hebing Chen,et al.  Comprehensive Identification and Annotation of Cell Type-Specific and Ubiquitous CTCF-Binding Sites in the Human Genome , 2012, PloS one.

[17]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[18]  Michael D. Wilson,et al.  Waves of Retrotransposon Expansion Remodel Genome Organization and CTCF Binding in Multiple Mammalian Lineages , 2012, Cell.

[19]  P. Gregory,et al.  Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor , 2012, Cell.

[20]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[21]  Michael D. Wilson,et al.  Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules , 2012, Genome research.

[22]  Jesse R. Dixon,et al.  Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells , 2013, Proceedings of the National Academy of Sciences.

[23]  Bas van Steensel,et al.  Genome Architecture: Domain Organization of Interphase Chromosomes , 2013, Cell.

[24]  Jennifer E. Phillips-Cremins,et al.  Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment , 2013, Cell.

[25]  D. Duboule,et al.  Topology of mammalian developmental enhancers and their regulatory landscapes , 2013, Nature.

[26]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[27]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[28]  Victor V Lobanenkov,et al.  A genome-wide map of CTCF multivalency redefines the CTCF code. , 2013, Cell reports.

[29]  Boris Lenhard,et al.  Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments , 2013, Genome research.

[30]  G. Schroth,et al.  Cohesin-mediated interactions organize chromosomal domain architecture , 2013, The EMBO journal.

[31]  V. Corces,et al.  CTCF: an architectural protein bridging genome topology and function , 2014, Nature Reviews Genetics.

[32]  L. Ettwiller,et al.  Functional and topological characteristics of mammalian regulatory domains , 2014, Genome research.

[33]  Bing Ren,et al.  CRISPR Reveals a Distal Super-Enhancer Required for Sox2 Expression in Mouse Embryonic Stem Cells , 2014, PloS one.

[34]  Jill M Dowen,et al.  Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes , 2014, Cell.

[35]  Jennifer A. Mitchell,et al.  A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential , 2014, Genes & development.

[36]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[37]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[38]  Bing Ren,et al.  Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions , 2015, Genome Biology.

[39]  D. Odom,et al.  Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture , 2015, Cell reports.

[40]  Paola Bovolenta,et al.  Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders , 2015, Proceedings of the National Academy of Sciences.

[42]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.