Multi-Objective Low-Thrust Interplanetary Trajectory Optimization Based on Generalized Logarithmic Spirals
暂无分享,去创建一个
Manuel Soler | Manuel Sanjurjo Rivo | David Morante | M. Soler | David Morante | Manuel Sanjurjo Rivo
[1] Anastassios E. Petropoulos,et al. Design and Optimization of Low-Thrust Trajectories with Gravity Assists , 2003 .
[2] Bruce A. Conway,et al. Automated Design of Multiphase Space Missions Using Hybrid Optimal Control , 2009 .
[3] Victoria Coverstone-Carroll,et al. Benefits of solar electric propulsion for the next generation of planetary exploration missions , 1997 .
[4] Daniel Novak,et al. Improved Shaping Approach to the Preliminary Design of Low-Thrust Trajectories , 2011 .
[5] Bruce A. Conway,et al. Spacecraft Trajectory Optimization: Contents , 2010 .
[6] Joris T. Olympio,et al. Optimisation and optimal control methods for planet sequence design of low-thrust Interplanetary transfer problems with gravity-assists. (Techniques de commande optimale pour la recherche automatique de stratégies avec assistances gravitationnelles dans le cadre de missions interplanétaires) , 2008 .
[7] Massimiliano Vasile,et al. Preliminary Design of Low-Thrust Multiple Gravity-Assist Trajectories , 2006 .
[8] J. Olympio. Algorithm for Low Thrust Optimal Interplanetary Transfers with Escape and Capture Phases , 2008 .
[9] Juan Senent,et al. New Analytic Solution with Continuous Thrust: Generalized Logarithmic Spirals , 2016 .
[10] Bruce A. Conway,et al. Automated Mission Planning via Evolutionary Algorithms , 2012 .
[11] Gregory J. Whiffen,et al. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design , 2006 .
[12] Martin Buss,et al. Nonlinear Hybrid Dynamical Systems: Modeling, Optimal Control, and Applications , 2002 .
[13] Ossama Abdelkhalik,et al. Shape-Based Approximation of Constrained Low-Thrust Space Trajectories Using Fourier Series , 2012 .
[14] C. G. Sauer. OPTIMIZATION OF MULTIPLE TARGET ELECTRIC PROPULSION TRAJECTORIES , 1973 .
[15] David H. Lehman,et al. Results from the Deep Space 1 technology validation mission , 2000 .
[16] Bradley J. Wall,et al. Shape-Based Approach to Low-Thrust Rendezvous Trajectory Design , 2009 .
[17] John W. Hartmann,et al. Optimal multi-objective low-thrust spacecraft trajectories , 2000 .
[18] J. Betts. Survey of Numerical Methods for Trajectory Optimization , 1998 .
[19] V. Borkar,et al. A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..
[20] Anastassios E. Petropoulos,et al. Shape-Based Algorithm for Automated Design of Low-Thrust, Gravity-Assist Trajectories , 2004 .
[21] Ossama Abdelkhalik,et al. Hidden Genes Genetic Algorithm for Multi-Gravity-Assist Trajectories Optimization , 2011 .
[22] Staffan Persson,et al. SMART-1 mission description and development status , 2002 .
[23] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[24] Jacob A Englander,et al. An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem. , 2017, Journal of guidance, control, and dynamics : a publication of the American Institute of Aeronautics and Astronautics devoted to the technology of dynamics and control.
[25] Lorenz T. Biegler,et al. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..
[26] I. Michael Ross. Hybrid Optimal Control Framework for Mission Planning , 2005, Journal of Guidance, Control, and Dynamics.