Multi-Objective Low-Thrust Interplanetary Trajectory Optimization Based on Generalized Logarithmic Spirals

The multi-objective optimal design of low-thrust multigravity-assist trajectories is formulated within the hybrid optimal control framework. A new automated solution strategy for this problem is pr...

[1]  Anastassios E. Petropoulos,et al.  Design and Optimization of Low-Thrust Trajectories with Gravity Assists , 2003 .

[2]  Bruce A. Conway,et al.  Automated Design of Multiphase Space Missions Using Hybrid Optimal Control , 2009 .

[3]  Victoria Coverstone-Carroll,et al.  Benefits of solar electric propulsion for the next generation of planetary exploration missions , 1997 .

[4]  Daniel Novak,et al.  Improved Shaping Approach to the Preliminary Design of Low-Thrust Trajectories , 2011 .

[5]  Bruce A. Conway,et al.  Spacecraft Trajectory Optimization: Contents , 2010 .

[6]  Joris T. Olympio,et al.  Optimisation and optimal control methods for planet sequence design of low-thrust Interplanetary transfer problems with gravity-assists. (Techniques de commande optimale pour la recherche automatique de stratégies avec assistances gravitationnelles dans le cadre de missions interplanétaires) , 2008 .

[7]  Massimiliano Vasile,et al.  Preliminary Design of Low-Thrust Multiple Gravity-Assist Trajectories , 2006 .

[8]  J. Olympio Algorithm for Low Thrust Optimal Interplanetary Transfers with Escape and Capture Phases , 2008 .

[9]  Juan Senent,et al.  New Analytic Solution with Continuous Thrust: Generalized Logarithmic Spirals , 2016 .

[10]  Bruce A. Conway,et al.  Automated Mission Planning via Evolutionary Algorithms , 2012 .

[11]  Gregory J. Whiffen,et al.  Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design , 2006 .

[12]  Martin Buss,et al.  Nonlinear Hybrid Dynamical Systems: Modeling, Optimal Control, and Applications , 2002 .

[13]  Ossama Abdelkhalik,et al.  Shape-Based Approximation of Constrained Low-Thrust Space Trajectories Using Fourier Series , 2012 .

[14]  C. G. Sauer OPTIMIZATION OF MULTIPLE TARGET ELECTRIC PROPULSION TRAJECTORIES , 1973 .

[15]  David H. Lehman,et al.  Results from the Deep Space 1 technology validation mission , 2000 .

[16]  Bradley J. Wall,et al.  Shape-Based Approach to Low-Thrust Rendezvous Trajectory Design , 2009 .

[17]  John W. Hartmann,et al.  Optimal multi-objective low-thrust spacecraft trajectories , 2000 .

[18]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[19]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[20]  Anastassios E. Petropoulos,et al.  Shape-Based Algorithm for Automated Design of Low-Thrust, Gravity-Assist Trajectories , 2004 .

[21]  Ossama Abdelkhalik,et al.  Hidden Genes Genetic Algorithm for Multi-Gravity-Assist Trajectories Optimization , 2011 .

[22]  Staffan Persson,et al.  SMART-1 mission description and development status , 2002 .

[23]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[24]  Jacob A Englander,et al.  An Automated Solution of the Low-Thrust Interplanetary Trajectory Problem. , 2017, Journal of guidance, control, and dynamics : a publication of the American Institute of Aeronautics and Astronautics devoted to the technology of dynamics and control.

[25]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[26]  I. Michael Ross Hybrid Optimal Control Framework for Mission Planning , 2005, Journal of Guidance, Control, and Dynamics.