Electronic Structure and Nonadiabatic Dynamics of Atomic Silver Nanowire–N2 Systems

Plasmonic nanoparticles can facilitate bond breaking and drive reactions of nearby molecules. Some of these processes involve bond activations which are traditionally challenging to accomplish. How...

[1]  J. Lischner,et al.  Generation of plasmonic hot carriers from d-bands in metallic nanoparticles. , 2019, The Journal of chemical physics.

[2]  C. Aikens,et al.  TD-DFT and TD-DFTB Investigation of the Optical Properties and Electronic Structure of Silver Nanorods and Nanorod Dimers , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.

[3]  Jaeyoung Heo,et al.  Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. , 2018, Nano letters.

[4]  S. Meng,et al.  Plasmon-Induced Ultrafast Hydrogen Production in Liquid Water. , 2018, The journal of physical chemistry letters.

[5]  M. Head‐Gordon,et al.  How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values. , 2017, Journal of chemical theory and computation.

[6]  C. Aikens,et al.  Molecular Vibration Induced Plasmon Decay , 2017 .

[7]  A. Fernández-Domínguez,et al.  Classical and ab Initio Plasmonics Meet at Sub-nanometric Noble Metal Rods , 2017 .

[8]  M. Moskovits,et al.  Hot Charge Carrier Transmission from Plasmonic Nanostructures. , 2017, Annual review of physical chemistry.

[9]  Risto M. Nieminen,et al.  Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations. , 2017, Journal of chemical theory and computation.

[10]  Yu Jin Jang,et al.  Plasmonic Solar Cells: From Rational Design to Mechanism Overview. , 2016, Chemical reviews.

[11]  S. Linic,et al.  Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials. , 2016, ACS nano.

[12]  S. Linic,et al.  Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis , 2016, Nature Communications.

[13]  Lin-wang Wang,et al.  Interplay between plasmon and single-particle excitations in a metal nanocluster , 2015, Nature Communications.

[14]  Zijing Ding,et al.  Plasmon-induced dynamics of H2 splitting on a silver atomic chain , 2015 .

[15]  N. Govind,et al.  Excited State Absorption from Real-Time Time-Dependent Density Functional Theory. , 2015, Journal of chemical theory and computation.

[16]  T. Lian,et al.  Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition , 2015, Science.

[17]  F. Rabilloud Description of plasmon-like band in silver clusters: the importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations. , 2014, The Journal of chemical physics.

[18]  C. Aikens,et al.  Plasmon resonance analysis with configuration interaction. , 2014, Physical chemistry chemical physics : PCCP.

[19]  Christine M Aikens,et al.  Quantum coherent plasmon in silver nanowires: a real-time TDDFT study. , 2014, The Journal of chemical physics.

[20]  Mustapha Bencharif,et al.  Time-dependent density functional study of UV-visible absorption spectra of small noble metal clusters (Cun, Agn, Aun, n = 2–9, 20) , 2014 .

[21]  S. Maier,et al.  Quantum plasmonics , 2013, Nature Physics.

[22]  F. Rabilloud Assessment of the performance of long-range-corrected density functionals for calculating the absorption spectra of silver clusters. , 2013, The journal of physical chemistry. A.

[23]  Huanjun Chen,et al.  Plasmonic harvesting of light energy for Suzuki coupling reactions. , 2013, Journal of the American Chemical Society.

[24]  S. Linic,et al.  Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State , 2013, Science.

[25]  F. Rabilloud UV-visible absorption spectra of metallic clusters from TDDFT calculations , 2013 .

[26]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[27]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[28]  L. Jensen,et al.  Importance of Correctly Describing Charge-Transfer Excitations for Understanding the Chemical Effect in SERS. , 2012, The journal of physical chemistry letters.

[29]  Eric C Le Ru,et al.  Single-molecule surface-enhanced Raman spectroscopy. , 2012, Annual review of physical chemistry.

[30]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[31]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[32]  R. Birke,et al.  A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex. , 2010, The Journal of chemical physics.

[33]  D. Silverstein,et al.  Assessment of the accuracy of long-range corrected functionals for describing the electronic and optical properties of silver clusters. , 2010, The Journal of chemical physics.

[34]  M. Harb,et al.  Structure and optical properties of core-shell bimetallic Ag(n)Ni(n) clusters: Comparison with pure silver and nickel clusters. , 2009, The Journal of chemical physics.

[35]  Christine M Aikens,et al.  Electronic structure and TDDFT optical absorption spectra of silver nanorods. , 2009, The journal of physical chemistry. A.

[36]  John M Herbert,et al.  A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states. , 2009, The Journal of chemical physics.

[37]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[38]  S. Linic,et al.  Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. , 2008, Journal of the American Chemical Society.

[39]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[40]  M. Head‐Gordon,et al.  Systematic optimization of long-range corrected hybrid density functionals. , 2008, The Journal of chemical physics.

[41]  Trygve Helgaker,et al.  Excitation energies in density functional theory: an evaluation and a diagnostic test. , 2008, The Journal of chemical physics.

[42]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[43]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[44]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[45]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[46]  M. Frisch,et al.  Ab initio Ehrenfest dynamics. , 2005, The Journal of chemical physics.

[47]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[48]  A. Daniel Boese,et al.  New exchange-correlation density functionals: The role of the kinetic-energy density , 2002 .

[49]  Gustavo E. Scuseria,et al.  A novel form for the exchange-correlation energy functional , 1998 .

[50]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[51]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[52]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[53]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[54]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .