The finite-frequency sensitivity kernel for migration residual moveout and its applications in migration velocity analysis

We have derived a broadband sensitivity kernel that relates the residual moveout (RMO) in prestack depth migration (PSDM) to velocity perturbations in the migration-velocity model. We have compared the kernel with the RMO directly measured from the migration image. The consistency between the sensitivity kernel and the measured sensitivity map validates the theory and the numerical implementation. Based on this broadband sensitivity kernel, we propose a new tomography method for migration-velocity analysis and updating — specifically, for the shot-record PSDM and shot-index common-image gather. As a result, time-consuming angle-domain analysis is not required. We use a fast one-way propagator and multiple forward scattering and single backscattering approximations to calculate the sensitivity kernel. Using synthetic data sets, we can successfully invert velocity perturbations from the migration RMO. This wave-equation-based method naturally incorporates the wave phenomena and is best teamed with the wave-...

[1]  Christof Stork,et al.  REFLECTION TOMOGRAPHY IN THE POSTMIGRATED DOMAIN , 1992 .

[2]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[3]  Kamal M. Al-Yahya,et al.  Velocity analysis by iterative profile migration , 1987 .

[4]  D. Smeulders,et al.  Validation of first-order diffraction theory for the traveltimes and amplitudes of propagating waves , 2006 .

[5]  Ru-Shan Wu,et al.  Beamlet migration using local cosine basis with shi fting windows , 2004 .

[6]  Paul Sava,et al.  Time-shift imaging condition in seismic migration , 2006 .

[7]  W. Symes,et al.  DSR Migration Velocity Analysis by Differential Semblance Optimization , 2006 .

[8]  W. Symes,et al.  Angle‐domain common‐image gathers for migration velocity analysis by wavefield‐continuation imaging , 2004 .

[9]  Biondo L. Biondi,et al.  3D Seismic Imaging , 2006 .

[10]  N. Bleistein,et al.  Velocity Analysis By Residual Moveout , 1992 .

[11]  Guust Nolet,et al.  Fréchet kernels for finite‐frequency traveltimes—II. Examples , 2000 .

[12]  John E. Peterson,et al.  Beyond ray tomography: Wavepaths and Fresnel volumes , 1995 .

[13]  Paul Sava,et al.  Angle-domain common-image gathers by wavefield continuation methods , 2003 .

[14]  F. A. Dahlen,et al.  Finite-frequency sensitivity kernels for boundary topography perturbations , 2004 .

[15]  Ru-Shan Wu,et al.  One-way and one-return approximations (de wolf approximation) for fast elastic wave modeling in complex media , 2007 .

[16]  H. Chauris,et al.  Two-dimensional velocity macro model estimation from seismic reflection data by local differential semblance optimization: applications to synthetic and real data sets , 2001 .

[17]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[18]  R. Wu,et al.  Modeling elastic wave forward propagation and reflection using the complex screen method. , 2001, The Journal of the Acoustical Society of America.

[19]  Biondo Biondi,et al.  Angle-domain common image gathers by wave-equation migration , 1999 .

[20]  Robert Soubaras,et al.  Velocity model building by semblance maximization of modulated-shot gathers , 2007 .

[21]  Paul Sava,et al.  Offset and angle-domain common image-point gathers for shot-profile migration , 2002 .

[22]  Maarten V. de Hoop,et al.  Wave-equation reflection tomography: annihilators and sensitivity kernels , 2006 .

[23]  R. T. Cutler,et al.  Tomographic determination of velocity and depth in laterally varying media , 1985 .

[24]  E. K. Skarsoulis,et al.  Travel-time sensitivity kernels in ocean acoustic tomography , 2004 .

[25]  Gerard T. Schuster,et al.  Wave-equation traveltime inversion , 1991 .

[26]  Marta Woodward,et al.  Wave-equation tomography , 1992 .

[27]  Application of borehole‐radar Fresnel volume tomography to image porosity in a sand and gravel aquifer , 2007 .

[28]  Guust Nolet,et al.  Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .

[29]  R. Snieder,et al.  The Fresnel volume and transmitted waves , 2004 .

[30]  Scott A. Morton,et al.  Differential Semblance Velocity Analysis by Wave Equation Migration, Applications to High Resolution HAFB Dataset , 2003 .

[31]  Thomas H. Jordan,et al.  Full 3D Tomography for the Crustal Structure of the Los Angeles Region , 2007 .

[32]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[33]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[34]  Thomas H. Jordan,et al.  Three‐dimensional Fréchet differential kernels for seismicdelay times , 2000 .

[35]  Paul Sava,et al.  Wave-Equation Migration Velocity Analysis , 2004 .

[36]  Paul Sava,et al.  Wave-equation migration velocity analysis. I. Theory , 2004 .

[37]  C. Mosher,et al.  Migration Velocity Analysis Using Common Angle Image Gathers , 2001 .