Metal filling by high power impulse magnetron sputtering

High power impulse magnetron sputtering (HiPIMS) is an emerging thin film deposition technology that provides a highly ionized flux of sputtered species. This makes HiPIMS attractive for metal filling of nanosized holes for highly scaled semiconductor devices. In this work, HiPIMS filling with Cu and Co is investigated. We show that the quality of the hole filling is determined mainly by the fraction of ions in the deposited flux and their energy. The discharge waveforms alone are insufficient to determine the ionization of the metal flux. The experimental results are in a good agreement with Monte-Carlo simulations using the measured flux characteristics. Based on the simulations, strategies to improve the filling are discussed.

[1]  A. Pflug,et al.  TiOx deposited by magnetron sputtering: a joint modelling and experimental study , 2018 .

[2]  Shi-Li Zhang,et al.  Highly conductive ultrathin Co films by high-power impulse magnetron sputtering , 2018 .

[3]  C. Auth,et al.  A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[4]  J. Gudmundsson,et al.  A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons , 2017 .

[5]  gt hutilisateurs,et al.  IEEE International Electron Devices Meeting (IEDM) , 2016 .

[6]  J. Gudmundsson,et al.  An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge , 2016 .

[7]  F. Cemin,et al.  Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering , 2016 .

[8]  G. Grundmeier,et al.  Direct metallization of PMMA with aluminum films using HIPIMS , 2016 .

[9]  D. Gall Electron mean free path in elemental metals , 2016 .

[10]  A. Anders A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS) , 2014 .

[11]  M. Gall,et al.  Advanced metallization concepts and impact on reliability , 2014 .

[12]  A. Anders,et al.  On the road to self-sputtering in high power impulse magnetron sputtering: particle balance and discharge characteristics , 2014 .

[13]  Z. Hubička,et al.  Investigation of ionized metal flux fraction in HiPIMS discharge with Ti and Ni target , 2014 .

[14]  L. Martinu,et al.  Deposition rate enhancement in HiPIMS without compromising the ionized fraction of the deposition flux , 2013 .

[15]  J. Vlček,et al.  Transport and ionization of sputtered atoms in high-power impulse magnetron sputtering discharges , 2013 .

[16]  J. Bradley,et al.  Ionized metal flux fraction measurements in HiPIMS discharges , 2012 .

[17]  A. Anders,et al.  Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses , 2012 .

[18]  S. Ólafsson,et al.  Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering , 2012, IEEE Electron Device Letters.

[19]  U. Helmersson,et al.  Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields , 2012 .

[20]  U. Helmersson,et al.  High power impulse magnetron sputtering discharge , 2012 .

[21]  K. Sarakinos,et al.  An introduction to thin film processing using high-power impulse magnetron sputtering , 2012 .

[22]  J. Vlček,et al.  A phenomenological equilibrium model applicable to high-power pulsed magnetron sputtering , 2010 .

[23]  J. Bradley,et al.  The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate , 2010 .

[24]  A. Anders Deposition rates of high power impulse magnetron sputtering: Physics and economics , 2010 .

[25]  C. C. Klepper,et al.  Energetic deposition of B10 on high aspect ratio trenches for neutron detectors , 2009 .

[26]  D. Depla,et al.  The metal flux from a rotating cylindrical magnetron: a Monte Carlo simulation , 2008 .

[27]  André Anders,et al.  Metal plasmas for the fabrication of nanostructures , 2007 .

[28]  J. Musil,et al.  Ion flux characteristics in high-power pulsed magnetron sputtering discharges , 2007 .

[29]  U. Helmersson,et al.  Ionized physical vapor deposition (IPVD): A review of technology and applications , 2006 .

[30]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[31]  M. Kushner,et al.  Trench filling by ionized metal physical vapor deposition , 2001 .

[32]  Daniel C. Edelstein,et al.  Copper Metallization for High Performance Silicon Technology , 2000 .

[33]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[34]  Karen Reinhardt,et al.  Handbook of silicon wafer cleaning technology , 2018 .