Metal filling by high power impulse magnetron sputtering
暂无分享,去创建一个
[1] A. Pflug,et al. TiOx deposited by magnetron sputtering: a joint modelling and experimental study , 2018 .
[2] Shi-Li Zhang,et al. Highly conductive ultrathin Co films by high-power impulse magnetron sputtering , 2018 .
[3] C. Auth,et al. A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).
[4] J. Gudmundsson,et al. A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons , 2017 .
[5] gt hutilisateurs,et al. IEEE International Electron Devices Meeting (IEDM) , 2016 .
[6] J. Gudmundsson,et al. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge , 2016 .
[7] F. Cemin,et al. Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering , 2016 .
[8] G. Grundmeier,et al. Direct metallization of PMMA with aluminum films using HIPIMS , 2016 .
[9] D. Gall. Electron mean free path in elemental metals , 2016 .
[10] A. Anders. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS) , 2014 .
[11] M. Gall,et al. Advanced metallization concepts and impact on reliability , 2014 .
[12] A. Anders,et al. On the road to self-sputtering in high power impulse magnetron sputtering: particle balance and discharge characteristics , 2014 .
[13] Z. Hubička,et al. Investigation of ionized metal flux fraction in HiPIMS discharge with Ti and Ni target , 2014 .
[14] L. Martinu,et al. Deposition rate enhancement in HiPIMS without compromising the ionized fraction of the deposition flux , 2013 .
[15] J. Vlček,et al. Transport and ionization of sputtered atoms in high-power impulse magnetron sputtering discharges , 2013 .
[16] J. Bradley,et al. Ionized metal flux fraction measurements in HiPIMS discharges , 2012 .
[17] A. Anders,et al. Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses , 2012 .
[18] S. Ólafsson,et al. Nucleation and Resistivity of Ultrathin TiN Films Grown by High-Power Impulse Magnetron Sputtering , 2012, IEEE Electron Device Letters.
[19] U. Helmersson,et al. Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields , 2012 .
[20] U. Helmersson,et al. High power impulse magnetron sputtering discharge , 2012 .
[21] K. Sarakinos,et al. An introduction to thin film processing using high-power impulse magnetron sputtering , 2012 .
[22] J. Vlček,et al. A phenomenological equilibrium model applicable to high-power pulsed magnetron sputtering , 2010 .
[23] J. Bradley,et al. The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate , 2010 .
[24] A. Anders. Deposition rates of high power impulse magnetron sputtering: Physics and economics , 2010 .
[25] C. C. Klepper,et al. Energetic deposition of B10 on high aspect ratio trenches for neutron detectors , 2009 .
[26] D. Depla,et al. The metal flux from a rotating cylindrical magnetron: a Monte Carlo simulation , 2008 .
[27] André Anders,et al. Metal plasmas for the fabrication of nanostructures , 2007 .
[28] J. Musil,et al. Ion flux characteristics in high-power pulsed magnetron sputtering discharges , 2007 .
[29] U. Helmersson,et al. Ionized physical vapor deposition (IPVD): A review of technology and applications , 2006 .
[30] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .
[31] M. Kushner,et al. Trench filling by ionized metal physical vapor deposition , 2001 .
[32] Daniel C. Edelstein,et al. Copper Metallization for High Performance Silicon Technology , 2000 .
[33] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing , 1994 .
[34] Karen Reinhardt,et al. Handbook of silicon wafer cleaning technology , 2018 .