Synoptic control on snow avalanche activity in central Spitsbergen

Abstract. Atmospheric circulation exerts an important control on a region's snow avalanche activity by broadly determining the mountain weather patterns which influence snowpack development and avalanche release. In central Spitsbergen, the largest island in the high-Arctic Svalbard archipelago, avalanches are a common natural hazard throughout the winter months. Previous work has identified a unique snow climate reflecting the region's climatically dynamic environmental setting but has not specifically addressed the synoptic-scale control of atmospheric circulation on avalanche activity here. In this work, we investigate atmospheric circulation's control on snow avalanching in the Nordenskiöld Land region of central Spitsbergen by first constructing a four-season (2016/2017–2019/2020) regional avalanche activity record using observations available on a database used by the Norwegian Water Resources and Energy Directorate (NVE). We then analyze the synoptic atmospheric conditions on days with differing avalanche activity situations. Our results show synoptic conditions conducive to elevated precipitation, wind speeds, and air temperatures near Svalbard are associated with increased avalanche activity in Nordenskiöld Land, but different synoptic signals exist for days characterized by dry, mixed, and wet avalanche activity. Differing upwind conditions help further explain differences in the frequency and nature of avalanche activity resulting from these various atmospheric circulation patterns. We further employ a daily atmospheric circulation calendar to help contextualize our results in the growing body of literature related to environmental change in this location. This work helps expand our understanding of snow avalanches in Svalbard to a broader spatial scale and provides a basis for future work investigating the impacts of environmental change on avalanche activity in Svalbard and other locations where avalanche regimes are impacted by changing climatic and synoptic conditions.

[1]  K. Birkeland,et al.  Synoptic atmospheric circulation patterns associated with deep persistent slab avalanches in the western United States , 2021 .

[2]  Yves Bühler,et al.  Mapping avalanches with satellites – evaluation of performance and completeness , 2020, The Cryosphere.

[3]  K. Birkeland,et al.  Synoptic atmospheric circulation patterns associated with deep persistent slab avalanches in the western United States , 2020 .

[4]  K. Isaksen,et al.  Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898–2018 , 2020 .

[5]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[6]  J. Cassano,et al.  Present Temperature, Precipitation, and Rain‐on‐Snow Climate in Svalbard , 2020, Journal of Geophysical Research: Atmospheres.

[7]  I. Hanssen‐Bauer,et al.  Measured and Modeled Historical Precipitation Trends for Svalbard , 2020, Journal of Hydrometeorology.

[8]  K. Müller,et al.  Avalanche warning in Svalbard. , 2020 .

[9]  T. Vihma,et al.  Trends in cyclones in the high‐latitude North Atlantic during 1979–2016 , 2019, Quarterly Journal of the Royal Meteorological Society.

[10]  Yves Bühler,et al.  Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps , 2019 .

[11]  J. Hendrikx,et al.  Quantifying seasonal cornice dynamics using a terrestrial laser scanner in Svalbard, Norway , 2019, Natural Hazards and Earth System Sciences.

[12]  E. Malnes,et al.  Near-Real Time Automatic Snow Avalanche Activity Monitoring System Using Sentinel-1 SAR Data in Norway , 2019, Remote. Sens..

[13]  Andreas Stoffel,et al.  On the relation between avalanche occurrence and avalanche danger level , 2019, The Cryosphere.

[14]  K. Isaksen,et al.  Present and future changes in winter climate indices relevant for access disruptions in Troms, northern Norway , 2019, Natural Hazards and Earth System Sciences.

[15]  S. Sandven,et al.  Climate in Svalbard 2100 – a knowledge base for climate adaptation , 2019 .

[16]  B. Peeters,et al.  Spatiotemporal patterns of rain-on-snow and basal ice in high Arctic Svalbard: detection of a climate-cryosphere regime shift , 2019, Environmental Research Letters.

[17]  J. Hendrikx,et al.  Combining high spatial resolution snow mapping and meteorological analyses to improve forecasting of destructive avalanches in Longyearbyen, Svalbard , 2018, Cold Regions Science and Technology.

[18]  J. Madrigal‐González,et al.  Climate warming enhances snow avalanche risk in the Western Himalayas , 2018, Proceedings of the National Academy of Sciences.

[19]  Michael Lehning,et al.  The European mountain cryosphere: a review of its current state, trends, and future challenges , 2018 .

[20]  J. A. Ballesteros-Cánovasa,et al.  Climate warming enhances snow avalanche risk in the Western Himalayas , 2018 .

[21]  Robert M. Graham,et al.  Extreme cyclone events in the Arctic: Wintertime variability and trends , 2017 .

[22]  M. Grabiec,et al.  Snow deposition patterns on southern Spitsbergen glaciers, Svalbard, in relation to recent meteorological conditions and local topography , 2017 .

[23]  D. Germain,et al.  Large‐scale teleconnection patterns and synoptic climatology of major snow‐avalanche winters in the Presidential Range (New Hampshire, USA) , 2017 .

[24]  G. Liston,et al.  Multidecadal climate and seasonal snow conditions in Svalbard , 2016 .

[25]  J. López‐Moreno,et al.  Impact of climate warming on snow processes in Ny-Ålesund, a polar maritime site at Svalbard , 2016 .

[26]  K. Isaksen,et al.  Recent warming on Spitsbergen—Influence of atmospheric circulation and sea ice cover , 2016 .

[27]  Stein Sandven,et al.  Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data , 2016 .

[28]  A. Barrett,et al.  Extreme daily precipitation events at Spitsbergen, an Arctic Island , 2015 .

[29]  Jakub Małecki Glacio−meteorology of Ebbabreen, Dickson Land, central Svalbard, during 2008-2010 melt seasons , 2015 .

[30]  K. Isaksen,et al.  Changes in Winter Warming Events in the Nordic Arctic Region , 2015 .

[31]  N. Eckert,et al.  Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods , 2014 .

[32]  F. Nilsen,et al.  Loss of sea ice during winter north of Svalbard , 2014 .

[33]  E. Bednorz,et al.  Atmospheric conditions governing anomalies of the summer and winter cloudiness in Spitsbergen , 2014, Theoretical and Applied Climatology.

[34]  D. Mcclung The effects of El Niño and La Niña on snow and avalanche patterns in British Columbia, Canada, and central Chile , 2013, Journal of Glaciology.

[35]  Leszek Kolendowicz,et al.  Summer mean daily air temperature extremes in Central Spitsbergen , 2013, Theoretical and Applied Climatology.

[36]  S. Underwood,et al.  Synoptic Scale Weather Patterns and Size-5 Avalanches on Mt. Shasta, California , 2012 .

[37]  H. Christiansen,et al.  Relating meteorological variables to the natural slab avalanche regime in High Arctic Svalbard , 2011 .

[38]  C. Schneider,et al.  An objective circulation pattern classification for the region of svalbard , 2011 .

[39]  H. Christiansen,et al.  Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006–2009 , 2011 .

[40]  H. Christiansen,et al.  Cornice dynamics and meteorological control at Gruvefjellet, Central Svalbard , 2011 .

[41]  Dmitri Kavetski,et al.  Representing spatial variability of snow water equivalent in hydrologic and land‐surface models: A review , 2011 .

[42]  J. Piechura,et al.  Influence of the West Spitsbergen Current on the local climate , 2011 .

[43]  H. Christiansen,et al.  The “High Arctic Maritime Snow Climate” in Central Svalbard , 2011 .

[44]  K. Fortuniak,et al.  The occurrence of coreless winters in central Spitsbergen and their synoptic conditions , 2011 .

[45]  J. C. Peña,et al.  WeMOI and NAOi influence on major avalanche activity in the Eastern Pyrenees , 2010 .

[46]  J. Gavaldà,et al.  Major avalanches occurrence at regional scale and related atmospheric circulation patterns in the Eastern Pyrenees , 2009 .

[47]  M. Clark,et al.  Assessing changes in the spatial variability of the snowpack fracture propagation propensity over time , 2009 .

[48]  J. Schweizer,et al.  Review of spatial variability of snowpack properties and its importance for avalanche formation , 2008 .

[49]  F. Cottier,et al.  Wintertime warming of an Arctic shelf in response to large‐scale atmospheric circulation , 2007 .

[50]  J. Rogers,et al.  The role of Fram Strait winter cyclones on sea ice flux and on Spitsbergen air temperatures , 2005 .

[51]  J. Schweizer,et al.  Snow avalanche formation , 2003 .

[52]  Jürg Schweizer,et al.  Verification of regional snowpack stability and avalanche danger , 2003 .

[53]  D. Mcclung,et al.  Avalanche characteristics of a transitional snow climate—Columbia Mountains, British Columbia, Canada , 2003 .

[54]  C. Keylock,et al.  The North Atlantic Oscillation and snow avalanching in Iceland , 2003 .

[55]  David M. McClung,et al.  The Elements of Applied Avalanche Forecasting, Part II: The Physical Issues and the Rules of Applied Avalanche Forecasting , 2002 .

[56]  K. Birkeland,et al.  Avalanche extremes and atmospheric circulation patterns , 2001, Annals of Glaciology.

[57]  Brent Yarnal,et al.  Synoptic Climatology in Environmental Analysis: A Primer , 1994 .

[58]  B. Fitzharris A climatology of major avalanche winters in Western Canada , 1987 .

[59]  B. Fitzharris,et al.  A synoptic climatology of major avalanche winters in Norway , 1986 .

[60]  H. Björnsson Avalanche Activity in Iceland, Climatic Conditions, and Terrain Features , 1980, Journal of Glaciology.

[61]  E. Lachapelle,et al.  The Fundamental Processes in Conventional Alavalanche Forecasting , 1980, Journal of Glaciology.

[62]  M. A. Veeder,et al.  Atmospheric Circulation , 2019, Dictionary of Geotourism.