Bayesian nonparametric modeling for functional analysis of variance

Analysis of variance is a standard statistical modeling approach for comparing populations. The functional analysis setting envisions that mean functions are associated with the populations, customarily modeled using basis representations, and seeks to compare them. Here, we adopt the modeling approach of functions as realizations of stochastic processes. We extend the Gaussian process version to allow nonparametric specifications using Dirichlet process mixing. Several metrics are introduced for comparison of populations. Then we introduce a hierarchical Dirichlet process model which enables comparison of the population distributions, either directly or through functionals of interest using the foregoing metrics. The modeling is extended to allow us to switch the sampling scheme. There are still population level distributions but now we sample at levels of the functions, obtaining observations from potentially different individuals at different levels. We illustrate with both simulated data and a dataset of temperature versus depth measurements at different locations in the Atlantic Ocean.

[1]  S. Sain,et al.  Bayesian functional ANOVA modeling using Gaussian process prior distributions , 2010 .

[2]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[3]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[4]  J. Rice,et al.  Smoothing spline models for the analysis of nested and crossed samples of curves , 1998 .

[5]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[6]  Jeffrey S. Morris,et al.  Wavelet‐based functional mixed models , 2006, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[7]  John T. Kent,et al.  Continuity Properties for Random Fields , 1989 .

[8]  A. Gelfand,et al.  Bayesian Nonparametric Functional Data Analysis Through Density Estimation. , 2009, Biometrika.

[9]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[10]  H. Ishwaran,et al.  DIRICHLET PRIOR SIEVES IN FINITE NORMAL MIXTURES , 2002 .

[11]  Alan E. Gelfand,et al.  The Dirichlet labeling process for clustering functional data , 2011 .

[12]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[13]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[14]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[15]  Alan E. Gelfand,et al.  Hybrid Dirichlet processes for functional data. , 2007 .

[16]  David B. Dunson,et al.  NONPARAMETRIC BAYES KERNEL-BASED PRIORS FOR FUNCTIONAL DATA ANALYSIS , 2009 .

[17]  S. MacEachern,et al.  Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .

[18]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[19]  XuanLong Nguyen,et al.  Inference of global clusters from locally distributed data , 2010, ArXiv.

[20]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[21]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[22]  James Stephen Marron,et al.  Mixed-Model Functional ANOVA for Studying Human Tactile Perception , 2003 .

[23]  X. Nguyen Convergence of latent mixing measures in finite and infinite mixture models , 2011, 1109.3250.

[24]  A. Gelfand,et al.  Hybrid Dirichlet mixture models for functional data , 2009 .

[25]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[26]  XuanLong Nguyen Borrowing strength in hierarchical Bayes: convergence of the Dirichlet base measure , 2013, ArXiv.

[27]  David B. Dunson,et al.  Bayesian Nonparametrics: Nonparametric Bayes applications to biostatistics , 2010 .

[28]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[29]  John R. Rice,et al.  Smoothing Spline Models for the Analysis of Nested and Crossed Samples of Curves: Rejoinder , 1998 .

[30]  Michael Lavine,et al.  Subjective Likelihood for the Assessment of Trends in the Ocean's Mixed-Layer Depth , 2007 .

[31]  R. Carroll,et al.  Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data , 2005 .

[32]  S. MacEachern,et al.  An ANOVA Model for Dependent Random Measures , 2004 .

[33]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[34]  R. Dudley Probabilities and metrics : convergence of laws on metric spaces, with a view to statistical testing , 1976 .

[35]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .