Bayesian nonparametric modeling for functional analysis of variance
暂无分享,去创建一个
[1] S. Sain,et al. Bayesian functional ANOVA modeling using Gaussian process prior distributions , 2010 .
[2] Noel A Cressie,et al. Statistics for Spatial Data. , 1992 .
[3] Michael L. Stein,et al. Interpolation of spatial data , 1999 .
[4] J. Rice,et al. Smoothing spline models for the analysis of nested and crossed samples of curves , 1998 .
[5] B. Silverman,et al. Functional Data Analysis , 1997 .
[6] Jeffrey S. Morris,et al. Wavelet‐based functional mixed models , 2006, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[7] John T. Kent,et al. Continuity Properties for Random Fields , 1989 .
[8] A. Gelfand,et al. Bayesian Nonparametric Functional Data Analysis Through Density Estimation. , 2009, Biometrika.
[9] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[10] H. Ishwaran,et al. DIRICHLET PRIOR SIEVES IN FINITE NORMAL MIXTURES , 2002 .
[11] Alan E. Gelfand,et al. The Dirichlet labeling process for clustering functional data , 2011 .
[12] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[13] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[14] J. S. Rao,et al. Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.
[15] Alan E. Gelfand,et al. Hybrid Dirichlet processes for functional data. , 2007 .
[16] David B. Dunson,et al. NONPARAMETRIC BAYES KERNEL-BASED PRIORS FOR FUNCTIONAL DATA ANALYSIS , 2009 .
[17] S. MacEachern,et al. Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .
[18] Z. Q. John Lu,et al. Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.
[19] XuanLong Nguyen,et al. Inference of global clusters from locally distributed data , 2010, ArXiv.
[20] Frédéric Ferraty,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[21] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[22] James Stephen Marron,et al. Mixed-Model Functional ANOVA for Studying Human Tactile Perception , 2003 .
[23] X. Nguyen. Convergence of latent mixing measures in finite and infinite mixture models , 2011, 1109.3250.
[24] A. Gelfand,et al. Hybrid Dirichlet mixture models for functional data , 2009 .
[25] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[26] XuanLong Nguyen. Borrowing strength in hierarchical Bayes: convergence of the Dirichlet base measure , 2013, ArXiv.
[27] David B. Dunson,et al. Bayesian Nonparametrics: Nonparametric Bayes applications to biostatistics , 2010 .
[28] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[29] John R. Rice,et al. Smoothing Spline Models for the Analysis of Nested and Crossed Samples of Curves: Rejoinder , 1998 .
[30] Michael Lavine,et al. Subjective Likelihood for the Assessment of Trends in the Ocean's Mixed-Layer Depth , 2007 .
[31] R. Carroll,et al. Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data , 2005 .
[32] S. MacEachern,et al. An ANOVA Model for Dependent Random Measures , 2004 .
[33] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[34] R. Dudley. Probabilities and metrics : convergence of laws on metric spaces, with a view to statistical testing , 1976 .
[35] Sw. Banerjee,et al. Hierarchical Modeling and Analysis for Spatial Data , 2003 .