Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH3NH3PbI3

[1]  Liduo Wang,et al.  Mixed Cation FAxPEA1–xPbI3 with Enhanced Phase and Ambient Stability toward High‐Performance Perovskite Solar Cells , 2017 .

[2]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[3]  Sung‐Ho Jin,et al.  Highly stable and efficient inverted organic solar cells based on low-temperature solution-processed PEIE and ZnO bilayers , 2016 .

[4]  G. Marcì,et al.  Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 1. Surface and Bulk Characterization , 2001 .

[5]  C. Daneault,et al.  Chemical Modification of Poly(Vinyl Alcohol) in Water , 2015 .

[6]  Sung-Yong Min,et al.  Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light‐Emitting Diodes , 2014 .

[7]  K. Catchpole,et al.  Improved Reproducibility for Perovskite Solar Cells with 1 cm2 Active Area by a Modified Two-Step Process. , 2017, ACS applied materials & interfaces.

[8]  Ming He,et al.  High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction , 2014 .

[9]  Dong-Won Kang,et al.  Improved interface of ZnO/CH3NH3PbI3 by a dynamic spin-coating process for efficient perovskite solar cells , 2017 .

[10]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[11]  Oleksandr Voznyy,et al.  Perovskite energy funnels for efficient light-emitting diodes. , 2016, Nature nanotechnology.

[12]  Andreas Schönleber,et al.  The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation. , 2017, Physical chemistry chemical physics : PCCP.

[13]  Yanlin Song,et al.  Polyethyleneimine High-Energy Hydrophilic Surface Interfacial Treatment toward Efficient and Stable Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[14]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[15]  M. Sheikhi,et al.  High Efficiency MAPbI3 Perovskite Solar Cell Using a Pure Thin Film of Polyoxometalate as Scaffold Layer. , 2017, ChemSusChem.

[16]  Zong-Liang Tseng,et al.  Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells , 2015, Scientific Reports.

[17]  Hyun‐Seok Kim,et al.  ZnO-morphology-dependent effects on the photovoltaic performance for inverted polymer solar cells , 2017 .

[18]  Charles A Schmuttenmaer,et al.  Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. , 2006, The journal of physical chemistry. B.

[19]  Zhiqiang Guan,et al.  Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. , 2015, ACS applied materials & interfaces.

[20]  Islah-u-din,et al.  Efficient and low cost inverted hybrid bulk heterojunction solar cells , 2015 .

[21]  Aram Amassian,et al.  Ligand-Stabilized Reduced-Dimensionality Perovskites. , 2016, Journal of the American Chemical Society.

[22]  Ashraful Islam,et al.  Modeling of an equivalent circuit for dye-sensitized solar cells : improvement of efficiency of dye-sensitized solar cells by reducing internal resistance , 2006 .

[23]  Dong Ha Kim,et al.  Perovskite-based photodetectors: materials and devices. , 2017, Chemical Society reviews.

[24]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[25]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[26]  Zhiqun Lin,et al.  Semiconductor anisotropic nanocomposites obtained by directly coupling conjugated polymers with quantum rods. , 2011, Angewandte Chemie.

[27]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[28]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[29]  A. Jen,et al.  Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells. , 2015, Nanoscale.

[30]  B. Reeja‐Jayan,et al.  Controlling the growth and luminescence properties of well-faceted ZnO nanorods , 2007 .

[31]  J. Y. Kim,et al.  Synergistic enhancement and mechanism study of mechanical and moisture stability of perovskite solar cells introducing polyethylene-imine into the CH3NH3PbI3/HTM interface , 2015 .

[32]  Xuguang Liu,et al.  Enhanced device performance and stability of perovskite solar cells with low-temperature ZnO/TiO2 bilayered electron transport layers , 2018, RSC advances.

[33]  Y. Mao,et al.  Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells , 2015 .

[34]  Liwei Lin,et al.  Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer , 2015 .

[35]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[36]  Stephan Buecheler,et al.  Impact of interlayer application on band bending for improved electron extraction for efficient flexible perovskite mini-modules , 2018, Nano Energy.

[37]  L. Gepstein,et al.  Generating ring-shaped engineered heart tissues from ventricular and atrial human pluripotent stem cell-derived cardiomyocytes , 2020, Nature Communications.

[38]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[39]  Y. Sohn,et al.  The Interfacial Nature of TiO2 and ZnO Nanoparticles Modified by Gold Nanoparticles , 2010 .

[40]  Arif D. Sheikh,et al.  Ambipolar solution-processed hybrid perovskite phototransistors , 2015, Nature Communications.

[41]  S. Mali,et al.  Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers. , 2017, Nanoscale.

[42]  W. Choi,et al.  Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO , 2015, Scientific Reports.

[43]  Sungho Nam,et al.  Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers , 2015, Nature Communications.

[44]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[45]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[46]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[47]  Zhiqun Lin,et al.  Recent advances in interfacial engineering of perovskite solar cells , 2017 .

[48]  M. Zhang,et al.  Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors , 2013, Nanoscale Research Letters.

[49]  Zhiqun Lin,et al.  Active sites-enriched carbon matrix enables efficient triiodide reduction in dye-sensitized solar cells: An understanding of the active centers , 2018, Nano Energy.