Interior penalty preconditioners for mixed finite element approximations of elliptic problems

It is established that an interior penalty method applied to second-order elliptic problems gives rise to a local operator which is spectrally equivalent to the corresponding nonlocal operator arising from the mixed finite element method. This relation can be utilized in order to construct preconditioners for the discrete mixed system. As an example, a family of additive Schwarz preconditioners for these systems is constructed. Numerical examples which confirm the theoretical results are also presented.

[1]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[2]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[3]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[4]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[5]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[6]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[7]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[8]  R. Bank,et al.  A class of iterative methods for solving saddle point problems , 1989 .

[9]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[10]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[13]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[14]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[15]  J. Pasciak,et al.  An iterative method for elliptic problems on regions partitioned into substructures , 1986 .

[16]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .

[17]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[18]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[19]  J. Pasciak,et al.  Iterative techniques for time dependent Stokes problems , 1997 .

[20]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[21]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[22]  O. Axelsson NUMERICAL ALGORITHMS FOR INDEFINITE PROBLEMS , 1984 .

[23]  J. Mandel,et al.  Balancing domain decomposition for mixed finite elements , 1995 .

[24]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[25]  Ragnar Winther,et al.  Substructure preconditioners for elliptic saddle point problems , 1993 .

[26]  Panayot S. Vassilevski,et al.  An application of the abstract multilevel theory to nonconforming finite element methods , 1995 .

[27]  R. S. Falk,et al.  Error estimates for mixed methods , 1980 .

[28]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[29]  W. Queck The convergence factor of preconditioned algorithms of the Arrow-Hurwicz type , 1989 .

[30]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[31]  R. Verfürth A combined conjugate gradient - multi-grid algorithm for the numerical solution of the Stokes problem , 1984 .