Mount Pinatubo Aerosols, Chlorofluorocarbons, and Ozone Depletion

The injection into the stratosphere of large quantities of sulfur during the June 1991 eruption of Mount Pinatubo (Philippines) and the subsequent formation of sulfate aerosol particles have generated a number of perturbations in the atmosphere with potential effects on the Earth's climate. Changes in the solar and infrared radiation budget caused by the eruption should produce a cooling of the troposphere and a warming of the lower stratosphere. These changes could affect atmospheric circulation. In addition, heterogeneous chemical reactions on the surface of sulfate aerosol particles render the ozone molecules more vulnerable to atmospheric chlorine and hence to man-made chlorofluorocarbons.

[1]  T. Coley,et al.  Manganese Flux from Continental Margin Sediments in a Transect Through the Oxygen Minimum , 1992, Science.

[2]  Robert E. Veiga,et al.  SAGE II measurements of early Pinatubo aerosols , 1992 .

[3]  M. P. McCormick,et al.  Stratospheric temperature increases due to Pinatubo aerosols , 1992 .

[4]  M. Coffey,et al.  Airborne observations of SO2, HCl, and O3 in the stratospheric plume of the Pinatubo Volcano in July 1991 , 1992 .

[5]  Paul Pellegrino,et al.  Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data , 1992 .

[6]  R. McKenzie,et al.  Observations of depleted stratospheric NO2 following the Pinatubo volcanic eruption , 1992 .

[7]  Makiko Sato,et al.  Potential climate impact of Mount Pinatubo eruption , 1992 .

[8]  Bryan J. Johnson,et al.  Balloonborne measurements of the Pinatubo aerosol size distribution and volatility at Laramie, Wyomi , 1992 .

[9]  Arlin J. Krueger,et al.  Global tracking of the SO2 clouds from the June , 1992 .

[10]  P. Mote,et al.  Simulation of the Pinatubo aerosol cloud in general circulation model , 1991 .

[11]  R. Punongbayan,et al.  Anhydrite-bearing pumices from Mount Pinatubo: further evidence for the existence of sulphur-rich silicic magmas , 1991, Nature.

[12]  D. R. Hanson,et al.  The reaction probabilities of ClONO2 and N2O5 on 40 to 75% sulfuric acid solutions , 1991 .

[13]  M. Ko,et al.  Role of heterogeneous conversion of N2O5 on sulphate aerosols in global ozone losses , 1991, Nature.

[14]  M. McCormick,et al.  Stratospheric aerosol optical depth observed by the Stratospheric Aerosol and Gas Experiment II: Decay of the El Chichon and Ruiz volcanic perturbations , 1991 .

[15]  G. Brasseur,et al.  Future changes in stratospheric ozone and the role of heterogeneous chemistry , 1990, Nature.

[16]  G. Brasseur,et al.  An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere , 1990 .

[17]  S. Solomon,et al.  Ozone destruction through heterogeneous chemistry following the eruption of El Chichón , 1989 .

[18]  M. Mozurkewich,et al.  Reaction probability of N2O5 on aqueous aerosols , 1988 .

[19]  R. Lindzen,et al.  Hadley Circulations for Zonally Averaged Heating Centered off the Equator , 1988 .

[20]  David M. Golden,et al.  Heterogeneous interactions of chlorine nitrate, hydrogen chloride, and nitric acid with sulfuric acid surfaces at stratospheric temperatures , 1988 .

[21]  D. Hofmann Perturbations to the global atmosphere associated with the El Chichon volcanic eruption of 1982 , 1987 .

[22]  M. Coffey,et al.  Increased Stratospheric Hydrogen Chloride in the El Chich�n Cloud , 1984, Science.

[23]  J. Angell,et al.  Comparison of Tropospheric Temperatures Following Agung and El Chichón Volcanic Eruptions , 1984 .

[24]  T. Ackerman,et al.  Possible effects of the El Chichon volcanic cloud on the radiation budget of the northern Tropics , 1983 .

[25]  D. Hofmann,et al.  Sulfuric Acid Droplet Formation and Growth in the Stratosphere After the 1982 Eruption of El Chich�n , 1983, Science.

[26]  J. Angell,et al.  Comparison of stratospheric warmings following Agung and Chichon , 1983 .

[27]  A. Krueger,et al.  Sighting of El Chich�n Sulfur Dioxide Clouds with the Nimbus 7 Total Ozone Mapping Spectrometer , 1983, Science.

[28]  D. Hofmann,et al.  Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon , 1983 .

[29]  J. L. Brownscombe,et al.  Stratospheric warming following the El Chichón volcanic eruption , 1983, Nature.

[30]  M. P. McCormick,et al.  Temperature effects on the stratosphere of the April 4, 1982 eruption of El Chichon, Mexico , 1983 .

[31]  D. Deirmendjian On Volcanic and Other Particulate Turbidity Anomalies , 1973 .