Benchmark calculations for two-electron systems using explicitly correlated Gaussian functions

[1]  L. Wolniewicz The Werner band transition moments and the C 1Πu state of H2 , 1995 .

[2]  J. Rychlewski,et al.  Many‐electron explicitly correlated Gaussian functions. II. Ground state of the helium molecular ion He+2 , 1995 .

[3]  J. Rychlewski,et al.  The equivalence of explicitly correlated Slater and Gaussian functions in variational quantum chemistry computations: The ground state of H2 , 1994 .

[4]  W. Kutzelnigg,et al.  Potential energy surface of the H+3 ground state in the neighborhood of the minimum with microhartree accuracy and vibrational frequencies derived from it , 1994 .

[5]  W. Kutzelnigg,et al.  Configuration interaction calculations with terms linear in the interelectronic coordinate for the ground state of H+3. A benchmark study , 1993 .

[6]  J. Tennyson,et al.  H3+ in space , 1993 .

[7]  J. Rychlewski,et al.  Many‐electron explicitly correlated Gaussian functions. I. General theory and test results , 1993 .

[8]  H. Monkhorst,et al.  Obtaining microhartree accuracy for two‐electron systems with random‐tempered Gaussian‐type geminals , 1990 .

[9]  E. Clementi,et al.  Gaussian functions in Hylleraas‐configuration interaction calculations. V. An accurate abinitio H+3 potential‐energy surface , 1990 .

[10]  A. Preiskorn,et al.  Variational calculations for the ground state of H3 , 1984 .

[11]  R. D. Poshusta,et al.  Correlated Gaussian wavefunctions for H3 , 1973 .

[12]  N. Handy Correlated gaussian wavefunctions , 1973 .

[13]  H. James,et al.  The Ground State of the Hydrogen Molecule , 1933 .

[14]  K. Dressler,et al.  Adiabatic potential curves and nonadiabatic coupling functions for the first five excited 1∑+g states of the hydrogen molecule , 1994 .

[15]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..