The origin of new genes: glimpses from the young and old

Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.

[1]  A. Weiner,et al.  Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. , 1986, Annual review of biochemistry.

[2]  A. Clark,et al.  Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  E. Nevo,et al.  Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. Gilbert,et al.  Footprints of primordial introns on the eukaryotic genome. , 2001, Trends in genetics : TIG.

[5]  Anton Nekrutenko,et al.  Signatures of domain shuffling in the human genome. , 2002, Genome research.

[6]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[7]  S J de Souza,et al.  Relationship between "proto-splice sites" and intron phases: evidence from dicodon analysis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Motohashi,et al.  Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. , 2003, Molecular biology and evolution.

[9]  Mark Gerstein,et al.  Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. , 2002, Genome research.

[10]  W. Swanson,et al.  A test for faster X evolution in Drosophila. , 2002, Molecular biology and evolution.

[11]  A. Devries,et al.  Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Long,et al.  Intron presence–absence polymorphism in Drosophila driven by positive Darwinian selection , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Nei,et al.  Positive Darwinian selection after gene duplication in primate ribonuclease genes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Liangbiao Chen,et al.  Evolution of an antifreeze glycoprotein , 1999, Nature.

[15]  W. Gilbert,et al.  Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Justen Andrews,et al.  Paucity of Genes on the Drosophila X Chromosome Showing Male-Biased Expression , 2003, Science.

[17]  W. Gilbert,et al.  Intron phase correlations and the evolution of the intron/exon structure of genes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Jianzhi Zhang,et al.  Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey , 2002, Nature Genetics.

[19]  S. Boyle,et al.  An evolutionarily conserved germ cell-specific hnRNP is encoded by a retrotransposed gene. , 2000, Human molecular genetics.

[20]  L. Patthy,et al.  Intron‐dependent evolution: Preferred types of exons and introns , 1987, FEBS letters.

[21]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[22]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[23]  A. Hughes The evolution of functionally novel proteins after gene duplication , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  M. Ragan On surrogate methods for detecting lateral gene transfer. , 2001, FEMS microbiology letters.

[25]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[26]  M. Long,et al.  The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. , 2000, Molecular biology and evolution.

[27]  D. Hardie,et al.  Fatty acid synthase — an example of protein evolution by gene fusion , 1984 .

[28]  Evan E. Eichler,et al.  Positive selection of a gene family during the emergence of humans and African apes , 2001, Nature.

[29]  J. Nahon,et al.  Birth of Two Chimeric Genes in the Hominidae Lineage , 2001, Science.

[30]  W. Gilbert,et al.  Phylogenetically older introns strongly correlate with module boundaries in ancient proteins. , 2003, Genome research.

[31]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[32]  D. Labuda,et al.  Alu sequences in the coding regions of mRNA: a source of protein variability. , 1994, Trends in genetics : TIG.

[33]  S. Henikoff,et al.  Adaptive evolution of Cid, a centromere-specific histone in Drosophila. , 2001, Genetics.

[34]  Kevin R. Thornton,et al.  Rapid divergence of gene duplicates on the Drosophila melanogaster X chromosome. , 2002, Molecular biology and evolution.

[35]  E. Ostertag,et al.  Transduction of 3'-flanking sequences is common in L1 retrotransposition. , 2000, Human molecular genetics.

[36]  A. Nekrutenko,et al.  Transposable elements are found in a large number of human protein-coding genes. , 2001, Trends in genetics : TIG.

[37]  T. Ohta Further examples of evolution by gene duplication revealed through DNA sequence comparisons. , 1994, Genetics.

[38]  Liangbiao Chen,et al.  Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin. , 2003, Molecular biology and evolution.

[39]  D. Hartl,et al.  Selective sweep of a newly evolved sperm-specific gene in Drosophila , 1998, Nature.

[40]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[41]  B. Hall The EBG System of E. coli: Origin and Evolution of a Novel β-Galactosidase for the Metabolism of Lactose , 2003, Genetica.

[42]  D. Haber,et al.  The Tre2 (USP6) oncogene is a hominoid-specific gene , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. van Rijk,et al.  Molecular Mechanisms of Exon Shuffling: Illegitimate Recombination , 2003, Genetica.

[44]  Annabel E. Todd,et al.  Evolution of function in protein superfamilies, from a structural perspective. , 2001, Journal of molecular biology.

[45]  M. Long,et al.  Intron-exon structures: From molecular to population biology , 1998 .

[46]  M. Ashburner,et al.  Processed pseudogenes in Drosophila , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[47]  Austin L. Hughes,et al.  Adaptive Evolution of Genes and Genomes , 2000 .

[48]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[49]  J. Brosius,et al.  BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Nicholas H. Barton,et al.  The Relative Rates of Evolution of Sex Chromosomes and Autosomes , 1987, The American Naturalist.

[51]  L. Patthy,et al.  Exon shuffling and other ways of module exchange. , 1996, Matrix biology : journal of the International Society for Matrix Biology.

[52]  Kevin R. Thornton,et al.  Retroposed new genes out of the X in Drosophila. , 2002, Genome research.

[53]  J. Brosius,et al.  On "genomenclature": a comprehensive (and respectful) taxonomy for pseudogenes and other "junk DNA". , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Lindsley,et al.  The role of X-chromosome inactivation during spermatogenesis (Drosophila-allocycly-chromosome evolution-male sterility-dosage compensation). , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Long,et al.  Dntf-2r, a young Drosophila retroposed gene with specific male expression under positive Darwinian selection. , 2003, Genetics.

[56]  J. Brosius The Contribution of RNAs and Retroposition to Evolutionary Novelties , 2003, Genetica.

[57]  D. Hartl,et al.  Origin and Evolution of a New Gene Expressed in the Drosophila Sperm Axoneme , 2003, Genetica.

[58]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[59]  R. Guigó,et al.  Fusion of the human gene for the polyubiquitination coeffector UEV1 with Kua, a newly identified gene. , 2000, Genome research.

[60]  A. Monaco,et al.  Molecular evolution of FOXP2, a gene involved in speech and language , 2002, Nature.

[61]  J. Brosius,et al.  RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. , 1999, Gene.

[62]  B. S. Baker,et al.  Dosage compensation rox! , 2000, Current opinion in cell biology.

[63]  M. Kimura The Neutral Theory of Molecular Evolution: Introduction , 1983 .

[64]  M. Long,et al.  Evolution of novel genes. , 2001, Current opinion in genetics & development.

[65]  Kevin R. Thornton,et al.  Nucleotide Variation Along the Drosophila melanogaster Fourth Chromosome , 2002, Science.

[66]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[67]  S J de Souza,et al.  Intron positions correlate with module boundaries in ancient proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D. Petrov,et al.  High intrinsic rate of DNA loss in Drosophila , 1996, Nature.

[69]  H. A. Orr,et al.  Haldane's sieve and adaptation from the standing genetic variation. , 2001, Genetics.

[70]  F. B. Pickett,et al.  Splitting pairs: the diverging fates of duplicated genes , 2002, Nature Reviews Genetics.

[71]  Anna Lorenc,et al.  Transposable Elements and Vertebrate Protein Diversity , 2003, Genetica.

[72]  G. Ast,et al.  Splicing components are excluded from the transcriptionally inactive XY body in male meiotic nuclei. , 1994, Molecular biology of the cell.

[73]  M. Long,et al.  Origin of new genes and source for N-terminal domain of the chimerical gene, jingwei, in Drosophila. , 1999, Gene.

[74]  S J de Souza,et al.  Origin of genes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. McCarrey Nucleotide sequence of the promoter region of a tissue-specific human retroposon: comparison with its housekeeping progenitor. , 1987, Gene.

[76]  M. Adams,et al.  Recent Segmental Duplications in the Human Genome , 2002, Science.

[77]  X. Gu,et al.  Maximum-likelihood approach for gene family evolution under functional divergence. , 2001, Molecular biology and evolution.

[78]  H. Ochman,et al.  Lateral and oblique gene transfer. , 2001, Current opinion in genetics & development.

[79]  J. McCarrey Molecular evolution of the human Pgk-2 retroposon. , 1990, Nucleic acids research.

[80]  M. Long Protein‐coding Segments: Evolution of Exon‐Intron Gene Structure , 2001 .

[81]  Chung-I Wu,et al.  Sexual antagonism and X inactivation--the SAXI hypothesis. , 2003, Trends in genetics : TIG.

[82]  Fang Yang,et al.  An abundance of X-linked genes expressed in spermatogonia , 2001, Nature Genetics.

[83]  R. Maraia,et al.  The impact of short interspersed elements (SINEs) on the host genome , 1995 .

[84]  László Patthy,et al.  Protein Evolution by Exon-Shuffling , 1995 .

[85]  D. Begun Origin and evolution of a new gene descended from alcohol dehydrogenase in Drosophila. , 1997, Genetics.

[86]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[87]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[88]  W. Makałowski,et al.  Genomic scrap yard: how genomes utilize all that junk. , 2000, Gene.

[89]  V. Reinke,et al.  A global profile of germline gene expression in C. elegans. , 2000, Molecular cell.

[90]  P. Avner,et al.  X-chromosome inactivation: counting, choice and initiation , 2001, Nature Reviews Genetics.

[91]  Dan Graur,et al.  Alu-containing exons are alternatively spliced. , 2002, Genome research.

[92]  C. Langley,et al.  Restriction map variation in the Adh region of Drosophila. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[93]  R. Fisher,et al.  The Sheltering of Lethals , 1935, The American Naturalist.

[94]  M. Long,et al.  Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. , 2002, Molecular biology and evolution.

[95]  M. Long,et al.  Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. , 1993, Science.

[96]  J. Haldane,et al.  The Part Played by Recurrent Mutation in Evolution , 1933, The American Naturalist.

[97]  F. Brinkman,et al.  Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. , 2000, Molecular biology and evolution.

[98]  H. Kazazian L1 Retrotransposons Shape the Mammalian Genome , 2000, Science.

[99]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[100]  J. B. Walsh,et al.  How often do duplicated genes evolve new functions? , 1995, Genetics.

[101]  W. Messier,et al.  Episodic adaptive evolution of primate lysozymes , 1997, Nature.

[102]  D. A. Kramerov,et al.  Evolutionary History of 4.5SI RNA and Indication That It Is Functional , 2002, Journal of Molecular Evolution.

[103]  M. Boguski,et al.  Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. , 2000, Genome research.

[104]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[105]  E. Eichler,et al.  Segmental duplications and the evolution of the primate genome , 2002, Nature Reviews Genetics.

[106]  A. Devries,et al.  Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[107]  B. Snel,et al.  Genome evolution. Gene fusion versus gene fission. , 2000, Trends in Genetics.

[108]  J. Brosius,et al.  Retroposons--seeds of evolution. , 1991, Science.

[109]  S J de Souza,et al.  Evolution of the intron-exon structure of eukaryotic genes. , 1995, Current opinion in genetics & development.

[110]  Abderrahman Maftah,et al.  The Fucosyltransferase Gene Family: An Amazing Summary of the Underlying Mechanisms of Gene Evolution , 2004, Genetica.

[111]  Manyuan Long,et al.  Expansion of genome coding regions by acquisition of new genes , 2002, Genetica.

[112]  Colin D. Meiklejohn,et al.  Sex-Dependent Gene Expression and Evolution of the Drosophila Transcriptome , 2003, Science.

[113]  Jeffrey D. Palmer,et al.  Widespread horizontal transfer of mitochondrial genes in flowering plants , 2003, Nature.

[114]  B. Walsh Population-Genetic Models of the Fates of Duplicate Genes , 2003, Genetica.

[115]  Jianzhi Zhang,et al.  Accelerated protein evolution and origins of human-specific features: Foxp2 as an example. , 2002, Genetics.

[116]  W. Rice SEX CHROMOSOMES AND THE EVOLUTION OF SEXUAL DIMORPHISM , 1984, Evolution; international journal of organic evolution.

[117]  W. D. de Jong,et al.  Exon shuffling mimicked in cell culture. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[118]  W. Craigen,et al.  Retrotransposition of glycerol kinase-related genes from the X chromosome to autosomes: functional and evolutionary aspects. , 1999, Genomics.

[119]  W. G. Kelly,et al.  X-chromosome silencing in the germline of C. elegans. , 2002, Development.

[120]  C. Brown,et al.  Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. , 1998, Molecular biology and evolution.

[121]  M. Long,et al.  Intron-exon structures of eukaryotic model organisms. , 1999, Nucleic acids research.

[122]  J. McCarrey Evolution of tissue-specific gene expression in mammals: How a new phosphoglycerate kinase gene was formed and refined , 1994 .

[123]  W. Gilbert Why genes in pieces? , 1978, Nature.

[124]  M. Ruvolo,et al.  Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. , 2002, Molecular biology and evolution.