Real-time global illumination by precomputed local reconstruction from sparse radiance probes

We present a direct-to-indirect transport technique that enables accurate real-time rendering of indirect illumination in mostly static scenes of complexity on par with modern games while supporting fully dynamic lights, cameras and diffuse surface materials. Our key contribution is an algorithm for reconstructing the incident radiance field from a sparse set of local samples --- radiance probes --- by incorporating mutual visibility into the reconstruction filter. To compute global illumination, we factorize the direct-to-indirect transport operator into global and local parts, sample the global transport with sparse radiance probes at real-time, and use the sampled radiance field as input to our precomputed local reconstruction operator to obtain indirect radiance. In contrast to previous methods aiming to encode the global direct-to-indirect transport operator, our precomputed data is local in the sense that it needs no long-range interactions between probes and receivers, and every receiver depends only on a small, constant number of nearby radiance probes, aiding compression, storage, and iterative workflows. While not as accurate, we demonstrate that our method can also be used for rendering indirect illumination on glossy surfaces, and approximating global illumination in scenes with large-scale dynamic geometry.

[1]  Henrik Wann Jensen,et al.  Practical Hessian-based error control for irradiance caching , 2012, ACM Trans. Graph..

[2]  Frédo Durand,et al.  Frequency analysis and sheared reconstruction for rendering motion blur , 2009, ACM Trans. Graph..

[3]  Hendrik P. A. Lensch,et al.  Edge-avoiding À-Trous wavelet transform for fast global illumination filtering , 2010, HPG '10.

[4]  Kenny Mitchell,et al.  Modular Radiance Transfer , 2011, ACM Trans. Graph..

[5]  Thorsten Grosch,et al.  Precomputed illuminance composition for real-time global illumination , 2016, I3D.

[6]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[7]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[9]  Kavita Bala,et al.  Direct-to-indirect transfer for cinematic relighting , 2006, ACM Trans. Graph..

[10]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[11]  Li Fei-Fei,et al.  Crowdsourcing in Computer Vision , 2016, Found. Trends Comput. Graph. Vis..

[12]  Donald P. Greenberg,et al.  The Irradiance Volume , 1998, IEEE Computer Graphics and Applications.

[13]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[14]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[15]  Janne Kontkanen,et al.  Irradiance Filtering for Monte Carlo Ray Tracing , 2006 .

[16]  Sumanta N. Pattanaik,et al.  Radiance caching for efficient global illumination computation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[17]  F. Durand,et al.  Temporal light field reconstruction for rendering distribution effects , 2011, ACM Trans. Graph..

[18]  Michael Bosse,et al.  Unstructured lumigraph rendering , 2001, SIGGRAPH.

[19]  Elmar Eisemann,et al.  Interactive Indirect Illumination Using Voxel Cone Tracing , 2011, Comput. Graph. Forum.

[20]  David A. Forsyth,et al.  Fast and detailed approximate global illumination by irradiance decomposition , 2005, ACM Trans. Graph..

[21]  Per H. Christensen,et al.  The Path to Path-Traced Movies , 2016, Found. Trends Comput. Graph. Vis..

[22]  Frédo Durand,et al.  Frequency analysis and sheared filtering for shadow light fields of complex occluders , 2011, TOGS.

[23]  Miloš Hašan,et al.  Direct-to-indirect transfer for cinematic relighting , 2006, SIGGRAPH 2006.

[24]  Gregory J. Ward,et al.  A ray tracing solution for diffuse interreflection , 2008, SIGGRAPH '08.

[25]  Derek Nowrouzezahrai,et al.  Real-time global illumination using precomputed light field probes , 2017, I3D.

[26]  Sumanta N. Pattanaik,et al.  Improved radiance gradient computation , 2005, SCCG '05.

[27]  Hans-Peter Seidel,et al.  Micro-rendering for scalable, parallel final gathering , 2009, ACM Trans. Graph..

[28]  Hans-Peter Seidel,et al.  DACHSBACHER C.: Micro-rendering for scalable, parallel final gathering , 2022 .

[29]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[30]  Paul S. Heckbert,et al.  Irradiance gradients , 2008, SIGGRAPH '08.

[31]  SilvennoinenAri,et al.  Real-time global illumination by precomputed local reconstruction from sparse radiance probes , 2017 .

[32]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[33]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[34]  Jaakko Lehtinen,et al.  A meshless hierarchical representation for light transport , 2008, ACM Trans. Graph..

[35]  Janne Kontkanen,et al.  Wavelet radiance transport for interactive indirect lighting , 2006, EGSR '06.

[36]  F. Durand,et al.  A frequency analysis of light transport , 2005, ACM Trans. Graph..

[37]  Frédo Durand,et al.  Frequency analysis and sheared reconstruction for rendering motion blur , 2009, SIGGRAPH 2009.