ON CONDITIONALLY HETEROSCEDASTIC AR MODELS WITH THRESHOLDS

Conditional heteroscedasticity is prevalent in many time series. By view- ing conditional heteroscedasticity as the consequence of a dynamic mixture of in- dependent random variables, we develop a simple yet versatile observable mixing function, leading to the conditionally heteroscedastic AR model with thresholds, or a T-CHARM for short. We demonstrate its many attributes and provide com- prehensive theoretical underpinnings with efficient computational procedures and algorithms. We compare, via simulation, the performance of T-CHARM with the GARCH model. We report some experiences using data from economics, biology, and geoscience.

[1]  P. A. P. Moran,et al.  The statistical analysis of the Canadian Lynx cycle. , 1953 .

[2]  Simeon M. Berman,et al.  Maxima and high level excursions of stationary Gaussian processes , 1971 .

[3]  J. Dirkse An absorption probability for the Ornstein-Uhlenbeck process , 1975, Journal of Applied Probability.

[4]  H. Tong On a threshold model , 1978 .

[5]  Howell Tong,et al.  Threshold autoregression, limit cycles and cyclical data- with discussion , 1980 .

[6]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[7]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[8]  Howell Tong Discontinuous decision processes and threshold autoregressive time series modelling , 1982 .

[9]  D. Pollard Convergence of stochastic processes , 1984 .

[10]  G. C. Tiao,et al.  Consistent Estimates of Autoregressive Parameters and Extended Sample Autocorrelation Function for Stationary and Nonstationary ARMA Models , 1984 .

[11]  E. Nummelin General irreducible Markov chains and non-negative operators: Preface , 1984 .

[12]  Yi-Ching Yao,et al.  Approximating the Distribution of the Maximum Likelihood Estimate of the Change-Point in a Sequence of Independent Random Variables , 1987 .

[13]  G. Schwert Business Cycles, Financial Crises, and Stock Volatility , 1989 .

[14]  K. Chan,et al.  Testing for threshold autoregression , 1990 .

[15]  A. Bowman,et al.  A look at some data on the old faithful geyser , 1990 .

[16]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[17]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[18]  Richard L. Tweedie,et al.  ON THE EXISTENCE OF STATIONARY THRESHOLD AUTOREGRESSIVE MOVING‐AVERAGE PROCESSES , 1992 .

[19]  C. Gouriéroux,et al.  Qualitative threshold arch models , 1992 .

[20]  K. Chan,et al.  Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model , 1993 .

[21]  J. Zakoian,et al.  Threshold Arch Models and Asymmetries in Volatility , 1993 .

[22]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[23]  J. Zakoian Threshold heteroskedastic models , 1994 .

[24]  P. Perron,et al.  Estimating and testing linear models with multiple structural changes , 1995 .

[25]  Stephen Gray Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process , 1996 .

[26]  Wai Keung Li,et al.  On a Double-Threshold Autoregressive Heteroscedastic Time Series Model , 1996 .

[27]  B. Hansen,et al.  Inference in TAR Models , 1997 .

[28]  Jan G. De Gooijer,et al.  On threshold moving‐average models , 1998 .

[29]  Clive W. J. Granger,et al.  Unit Root Tests and Asymmetric Adjustment with an Example Using the Term Structure of Interest Rates , 1998 .

[30]  B. Hansen Sample Splitting and Threshold Estimation , 2000 .

[31]  Carlo Novara,et al.  Nonlinear Time Series , 2003 .

[32]  H. Tong,et al.  An adaptive estimation of dimension reduction space , 2002 .

[33]  B. Hansen,et al.  Testing for two-regime threshold cointegration in vector error-correction models , 2002 .

[34]  Wai Keung Li,et al.  Diagnostic Checks in Time Series , 2003 .

[35]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[36]  Wei Biao Wu,et al.  Limit theorems for iterated random functions , 2004, Journal of Applied Probability.

[37]  Marc S. Paolella,et al.  A New Approach to Markov-Switching GARCH Models , 2004 .

[38]  Howell Tong,et al.  TESTING FOR A LINEAR MA MODEL AGAINST THRESHOLD MA MODELS , 2005 .

[39]  Cathy W. S. Chen,et al.  On a threshold heteroscedastic model , 2006 .

[40]  Shiqing Ling,et al.  Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models , 2007 .

[41]  Jun Yan Spatial stochastic volatility for lattice data , 2007 .

[42]  Guodong Li,et al.  TESTING FOR THRESHOLD MOVING AVERAGE WITH CONDITIONAL HETEROSCEDASTICITY , 2008 .

[43]  W. Zucchini,et al.  Hidden Markov Models for Time Series: An Introduction Using R , 2009 .

[44]  N. Stenseth The Importance of TAR-Modelling for Understanding the Structure of Ecological Dynamics: The Hare-Lynx Population Cycles as an Example , 2009 .

[45]  Kung-Sik Chan,et al.  Time Series Analysis: With Applications in R , 2010 .

[46]  Dong Li,et al.  On the least squares estimation of threshold autoregressive and moving-average models ∗ , 2011 .

[47]  H. Tong,et al.  Score Based Goodness-of-fit Tests for Time Series , 2011 .

[48]  Guodong Li,et al.  Testing a linear time series model against its threshold extension , 2011 .

[49]  Howell Tong,et al.  Threshold Models in Time Series Analysis-30 Years On , 2011 .

[50]  Bodhisattva Sen,et al.  A continuous mapping theorem for the smallest argmax functional , 2011, 1105.1320.

[51]  B. Hansen Threshold autoregression in economics , 2011 .

[52]  H. Tong,et al.  On moving-average models with feedback , 2012, 1205.2948.

[53]  Dong Li,et al.  On the least squares estimation of multiple-regime threshold autoregressive models , 2012 .

[54]  W. Li,et al.  ASYMPTOTIC THEORY ON THE LEAST SQUARES ESTIMATION OF THRESHOLD MOVING-AVERAGE MODELS , 2013, Econometric Theory.

[55]  Diana Adler Non Linear Time Series A Dynamical System Approach , 2016 .

[56]  Sarah Kuester,et al.  Smoothing Techniques With Implementation In S , 2016 .