A Fluid Dynamic Model for Telecommunication Networks with Sources and Destinations

This paper proposes a macroscopic fluid dynamic model dealing with the flows of information on a telecommunication network with sources and destinations. The model consists of a conservation law for the packet density and a semilinear equation for traffic distribution functions, i.e., functions describing packet paths. We describe methods to solve Riemann problems at junctions assigning different traffic distribution functions and two “routing algorithms.” Moreover, we prove the existence of solutions to Cauchy problems for small perturbations of network equilibria.

[1]  Carlos F. Daganzo,et al.  Fundamentals of Transportation and Traffic Operations , 1997 .

[2]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[3]  CIRO D’APICE,et al.  Packet Flow on Telecommunication Networks , 2006, SIAM J. Math. Anal..

[4]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[5]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  Walter Willinger,et al.  The many facets of internet topology and traffic , 2006, Networks Heterog. Media.

[7]  H. Holden,et al.  A mathematical model of traffic flow on a network of unidirectional roads , 1995 .

[8]  Mathematisches Forschungsinstitut Oberwolfach,et al.  Hyperbolic Conservation Laws , 2004 .

[9]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[10]  V. Paxson,et al.  WHERE MATHEMATICS MEETS THE INTERNET , 1998 .

[11]  Mauro Garavello,et al.  Source-Destination Flow on a Road Network , 2005 .

[12]  Mauro Garavello,et al.  Traffic Flow on Networks , 2006 .

[13]  P. I. Richards Shock Waves on the Highway , 1956 .

[14]  Mauro Garavello,et al.  Traffic Flow on a Road Network , 2005, SIAM J. Math. Anal..

[15]  Axel Klar,et al.  Modeling, Simulation, and Optimization of Traffic Flow Networks , 2003, SIAM J. Sci. Comput..

[16]  Zhen Liu,et al.  Fixed Point Methods for the Simulation of the Sharing of a Local Loop by a Large Number of Interacting TCP Connections , 2001 .

[17]  Christian A. Ringhofer,et al.  A Model for the Dynamics of large Queuing Networks and Supply Chains , 2006, SIAM J. Appl. Math..

[18]  J. Nédélec,et al.  First order quasilinear equations with boundary conditions , 1979 .

[19]  P. Lax,et al.  Systems of conservation laws , 1960 .

[20]  Gordon F. Newell,et al.  Traffic flow on transportation networks , 1980 .

[21]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[22]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .