LaVo4: Eu Phosphor Films with Enhanced Eu Solubility

Eu doped rare-earth orthovanadates are known to be good red phosphor materials. In particular, LaVO{sub 4}:Eu is a promising candidate due to the low Eu-site point symmetry, and thus high dipole transition probability within Judd-Ofelt theory. However, the low solubility limit (< 3 mol %) of Eu in LaVO{sub 4} prevents its efficient use as a phosphor. We present optical evidence of enhanced Eu solubility as high as 10 mol % in LaVO{sub 4}:Eu thin films grown by pulsed laser deposition and postannealing. The photoluminescent intensity exceeded that of YVO{sub 4}:Eu thin films when excited below the host bandgap, indicating stronger direct emission of Eu in LaVO{sub 4}.

[1]  D. Gaskell Introduction to the Thermodynamics of Materials , 2017 .

[2]  H. Hwang,et al.  Interface reconstruction in V-oxide heterostructures determined by x-ray absorption spectroscopy , 2009, 0906.3519.

[3]  Xinyu Song,et al.  Selective Synthesis and Luminescent Properties of Monazite- and Zircon-Type LaVO4:Ln (Ln = Eu, Sm, and Dy) Nanocrystals , 2007 .

[4]  H. Hwang,et al.  Characterization of LaVOx thin films by photoemission spectroscopy , 2007 .

[5]  D. Muller,et al.  Nanometer scale electronic reconstruction at the interface between LaVO3 and LaVO4. , 2006, Physical review letters.

[6]  D. Muller,et al.  Growth and epitaxial structure of LaVOx films , 2006 .

[7]  Yadong Li,et al.  Effects of downconversion luminescent film in dye-sensitized solar cells , 2006 .

[8]  M. Khan,et al.  X-ray powder diffraction analysis of crystal structure of lanthanum orthovanadate , 2006 .

[9]  M. Yu,et al.  Effects of x and R3+ on the luminescent properties of Eu3+ in nanocrystalline YVxP1-xO4:Eu3+ and RVO4:Eu3+ thin-film phosphors , 2005 .

[10]  Chunhua Yan,et al.  Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals , 2004 .

[11]  T. Yao,et al.  Hydrothermal Synthesis of Lanthanum Vanadates: Synthesis and Crystal Structures of Zircon-Type LaVO4 and a New Compound LaV3O9 , 2000 .

[12]  Z. Zhang,et al.  Crystal growth. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Clifford R. Pollock,et al.  Amplification by optical composites. , 1997, Optics letters.

[14]  B. Chakoumakos,et al.  Crystal Structure Refinements of Zircon-Type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu) , 1994 .

[15]  B. Batlogg,et al.  Structural Aspects of the Crystallographic-Magnetic Transition in LaVO3 around 140 K , 1993 .

[16]  R. A. Fields,et al.  Highly efficient Nd:YVO4 diode‐laser end‐pumped laser , 1987 .

[17]  G. Mccarthy,et al.  Crystal chemistry of REVO3 phases (RE = La-Lu, Y) , 1974 .

[18]  J. D. Kingsley,et al.  Optical Constants of YVO4 Between 2 and 25 eV , 1970 .

[19]  J. R. O'connor,et al.  UNUSUAL CRYSTAL‐FIELD ENERGY LEVELS AND EFFICIENT LASER PROPERTIES OF YVO4:Nd , 1966 .

[20]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[21]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .