Controlling a biological invasion: a non-classical dynamic economic model

This paper analyzes the optimal intertemporal control of a biological invasion. The invasion growth function is non-convex and control costs depend on the invasion size, resulting in a non-classical dynamic optimization problem. We characterize the long run dynamic behavior of an optimally controlled invasion and the corresponding implications for public policy. Both control and the next-period invasion size may be non-monotone functions of the current invasion size; the related optimal time paths may not be monotone or convergent. We provide conditions under which eradication, maintenance control, and no control are optimal policies.

[1]  M. Majumdar Intertemporal Allocation with a Non-convex Technology , 2006 .

[2]  R. Schmalensee,et al.  Non-convexity and Optimal Harvesting Strategies for Renewable Resources , 1979 .

[3]  Edward B. Barbier,et al.  The economics of an invading species: a theoretical model and case study application , 2000 .

[4]  R. Schmalensee,et al.  Nonconvexity and Optimal Exhaustion of Renewable Resources , 1977 .

[5]  Alexei A. Sharov,et al.  BIOECONOMICS OF MANAGING THE SPREAD OFEXOTIC PEST SPECIES WITH BARRIER ZONES , 1998 .

[6]  Santanu Roy,et al.  The Economics of Controlling a Stochastic Biological Invasion , 2002 .

[7]  David Zilberman,et al.  The Economics of Controlling Insect‐Transmitted Plant Diseases , 2002 .

[8]  Itzhak Zilcha,et al.  On optimal growth under uncertainty , 1975 .

[9]  David L. Jaquette,et al.  A discrete time population control model , 1972 .

[10]  E. Wilman Pests: Sustained Harvest versus Eradication , 1996 .

[11]  A. Skiba,et al.  Optimal Growth with a Convex-Concave Production Function , 1978 .

[12]  Tapan Mitra,et al.  Periodic and chaotic programs of optimal intertemporal allocation in an aggregative model with wealth effects , 1994 .

[13]  A. Sharov,et al.  Bioeconomics of Managing the Spread of Exotic Pest Species with Barrier Zones , 2004, Risk analysis : an official publication of the Society for Risk Analysis.

[14]  Donald M. Topkis,et al.  Minimizing a Submodular Function on a Lattice , 1978, Oper. Res..

[15]  James Woodward,et al.  Biological invasions as global environmental change , 1996 .

[16]  Lars J. Olson,et al.  Stochastic dynamic models with stock-dependent rewards , 1991 .

[17]  西村 和雄,et al.  Optimization and Chaos , 2000 .

[18]  Christopher Costello,et al.  Protectionism, Trade, and Measures of Damage from Exotic Species Introductions , 2003 .

[19]  Tapan Mitra,et al.  Optimal exploitation of renewable resources under uncertainty and the extinction of species , 2006 .

[20]  Lars J. Olson,et al.  The Economics of Controlling a Biological Invasion , 2003 .

[21]  Ken-ichi Inada,et al.  On a Two-Sector Model of Economic Growth: Comments and a Generalization , 1963 .

[22]  Richard Harris,et al.  Non-Convexities in Continuous- Time Investment Theory , 1981 .

[23]  Julie A. Savidge,et al.  Extinction of an Island Forest Avifauna by an Introduced Snake , 1987 .

[24]  Kazuo Nishimura,et al.  A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Non-Concave Production Function , 1983 .

[25]  C. A. Shoemaker,et al.  Applications of dynamic programming and other optimization methods in pest management , 1981 .

[26]  Lars J. Olson,et al.  On Conservation of Renewable Resources with Stock-Dependent Return and Nonconcave Production , 1996 .

[27]  H. Dawid,et al.  On the Economically Optimal Exploitation of a Renewable Resource: The Case of a Convex Environment and a Convex Return Function , 1997 .

[28]  Tapan Mitra,et al.  Intertemporal allocation with a non-convex technology: The aggregative framework , 1982 .

[29]  J. Myers,et al.  Eradication and pest management. , 1998, Annual review of entomology.

[30]  D. Pimentel,et al.  Environmental and Economic Costs of Nonindigenous Species in the United States , 2000 .

[31]  Lars J. Olson,et al.  Stochastic growth when utility depends on both consumption and the stock level , 1994 .

[32]  J. Scheinkman,et al.  On the Differentiability of the Value Function in Dynamic Models of Economics , 1979 .

[33]  R. Strauch Negative Dynamic Programming , 1966 .

[34]  H. Dawid,et al.  On optimal cycles in dynamic programming models with convex return function , 1999 .

[35]  Colin W. Clark,et al.  Mathematical Bioeconomics: The Optimal Management of Renewable Resources. , 1993 .