Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling

[1]  B. Kuster,et al.  Preferential microRNA targeting revealed by in vivo competitive binding and differential Argonaute immunoprecipitation , 2017, Nucleic acids research.

[2]  S. Engelhardt,et al.  Viral Vector-Based Targeting of miR-21 in Cardiac Nonmyocyte Cells Reduces Pathologic Remodeling of the Heart , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[3]  Beverly L. Davidson,et al.  Elucidation of transcriptome-wide microRNA binding sites in human cardiac tissues by Ago2 HITS-CLIP , 2016, Nucleic acids research.

[4]  Peter Kohl,et al.  Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease , 2016, Nature Reviews Drug Discovery.

[5]  Jing Zhang,et al.  Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. , 2016, Journal of molecular and cellular cardiology.

[6]  P. McCrea,et al.  Beyond β-catenin: prospects for a larger catenin network in the nucleus , 2015, Nature Reviews Molecular Cell Biology.

[7]  Susan M. Schlenner,et al.  The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity , 2015, Diabetes.

[8]  L. Cascione,et al.  Gradual Rarefaction of Hematopoietic Precursors and Atrophy in a Depleted microRNA 29a, b and c Environment , 2015, PloS one.

[9]  J. Baron,et al.  Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration. , 2015, Molecular endocrinology.

[10]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease , 2014, Nucleic Acids Res..

[11]  René M. Botnar,et al.  Role of miR-195 in Aortic Aneurysmal Disease , 2014, Circulation research.

[12]  Jun Yu,et al.  microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway , 2014, Oncotarget.

[13]  Guoying Yu,et al.  MicroRNA mimicry blocks pulmonary fibrosis , 2014, EMBO molecular medicine.

[14]  Zhonghan Li,et al.  Therapeutic targeting of microRNAs: current status and future challenges , 2014, Nature Reviews Drug Discovery.

[15]  Arjun Deb Cell-cell interaction in the heart via Wnt/β-catenin pathway after cardiac injury. , 2014, Cardiovascular research.

[16]  A. Didangelos,et al.  Extracellular Matrix Secretion by Cardiac Fibroblasts: Role of MicroRNA-29b and MicroRNA-30c , 2013, Circulation research.

[17]  Yong Liu,et al.  miR-29c is downregulated in renal interstitial fibrosis in humans and rats and restored by HIF-α activation. , 2013, American journal of physiology. Renal physiology.

[18]  L. Zentilin,et al.  MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors , 2013, Circulation.

[19]  S. Nattel,et al.  Role of the Wnt‐Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential , 2013, The Journal of physiology.

[20]  A. Hata Functions of microRNAs in cardiovascular biology and disease. , 2013, Annual review of physiology.

[21]  P. Jiang,et al.  Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[22]  J. Mendell,et al.  MicroRNAs in Stress Signaling and Human Disease , 2012, Cell.

[23]  Merlin C. Thomas,et al.  Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. , 2012, Journal of the American Society of Nephrology : JASN.

[24]  Alicia Deng,et al.  Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. , 2012, The Journal of clinical investigation.

[25]  P. Tsao,et al.  miR-29b Participates in Early Aneurysm Development in Marfan Syndrome , 2012, Circulation research.

[26]  K. Chowdhury,et al.  The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy , 2012, Nature Communications.

[27]  Aikaterini S. Papadopoulou,et al.  The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor , 2011, Nature Immunology.

[28]  M. Vinciguerra,et al.  MicroRNA-29 in Aortic Dilation: Implications for Aneurysm Formation , 2011, Circulation research.

[29]  J. Qian,et al.  miR-29 is a major regulator of genes associated with pulmonary fibrosis. , 2011, American journal of respiratory cell and molecular biology.

[30]  Cheuk-Man Yu,et al.  TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. , 2011, Journal of the American Society of Nephrology : JASN.

[31]  T. Luedde,et al.  Micro‐RNA profiling reveals a role for miR‐29 in human and murine liver fibrosis , 2011, Hepatology.

[32]  T. P. Rao,et al.  An updated overview on Wnt signaling pathways: a prelude for more. , 2010, Circulation research.

[33]  G. Gronowicz,et al.  miR-29 Modulates Wnt Signaling in Human Osteoblasts through a Positive Feedback Loop* , 2010, The Journal of Biological Chemistry.

[34]  Oliver Distler,et al.  MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. , 2010, Arthritis and rheumatism.

[35]  Hui Zhou,et al.  Deep Sequencing of Human Nuclear and Cytoplasmic Small RNAs Reveals an Unexpectedly Complex Subcellular Distribution of miRNAs and tRNA 3′ Trailers , 2010, PloS one.

[36]  J. Nerbonne,et al.  MicroRNA-133a Protects Against Myocardial Fibrosis and Modulates Electrical Repolarization Without Affecting Hypertrophy in Pressure-Overloaded Adult Hearts , 2010, Circulation research.

[37]  I. Rigoutsos New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. , 2009, Cancer research.

[38]  R. Duisters,et al.  MIRNA-133 AND MIRNA-30 REGULATE CONNECTIVE TISSUE GROWTH FACTOR: IMPLICATIONS FOR A ROLE OF MIRNAS IN MYOCARDIAL MATRIX REMODELING , 2013 .

[39]  Y. Maejima,et al.  Distinct roles of GSK-3α and GSK-3β phosphorylation in the heart under pressure overload , 2008, Proceedings of the National Academy of Sciences.

[40]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[41]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[42]  Jeffrey E. Thatcher,et al.  Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis , 2008, Proceedings of the National Academy of Sciences.

[43]  S. Bailey,et al.  Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. , 2007, American journal of physiology. Heart and circulatory physiology.

[44]  C. Croce,et al.  MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.

[45]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[46]  E. Wentzel,et al.  A Hexanucleotide Element Directs MicroRNA Nuclear Import , 2007, Science.

[47]  Ajamete Kaykas,et al.  Zebrafish Prickle, a Modulator of Noncanonical Wnt/Fz Signaling, Regulates Gastrulation Movements , 2003, Current Biology.

[48]  E. Olson,et al.  Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Chris Albanese,et al.  Negative regulation of the Wnt–β‐catenin pathway by the transcriptional repressor HBP1 , 2001, The EMBO journal.

[50]  I. Saito,et al.  Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. , 1998, Gene.

[51]  F. Alt,et al.  Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Solter,et al.  Positive-negative selection gene targeting with the diphtheria toxin A-chain gene in mouse embryonic stem cells , 1993, Transgenic Research.

[53]  J. Ross,et al.  Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[54]  T. Friedmann An ASGCT Perspective on the National Academies Genome Editing Summit. , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[55]  Koen Van Laer,et al.  Current status and future challenges , 2015 .

[56]  Elisa Izaurralde,et al.  NON-CODING RNA Towards a molecular understanding of microRNA-mediated gene silencing , 2015 .

[57]  T. Thum,et al.  A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. , 2012, Journal of molecular and cellular cardiology.

[58]  E. Olson,et al.  Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. , 2002, Proceedings of the National Academy of Sciences of the United States of America.