Getting Feasible Variable Estimates from Infeasible Ones: MRF Local Polytope Study
暂无分享,去创建一个
[1] Nikos Komodakis,et al. MRF Optimization via Dual Decomposition: Message-Passing Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[2] Christoph Schnörr,et al. A bundle approach to efficient MAP-inference by Lagrangian relaxation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.
[3] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[4] Tommi S. Jaakkola,et al. Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.
[5] Stephen Gould,et al. Accelerated dual decomposition for MAP inference , 2010, ICML.
[6] Christoph Schnörr,et al. A study of Nesterov's scheme for Lagrangian decomposition and MAP labeling , 2011, CVPR 2011.
[7] Jeremy Jancsary,et al. Convergent Decomposition Solvers for Tree-reweighted Free Energies , 2011, AISTATS.
[8] Tommi S. Jaakkola,et al. Introduction to dual composition for inference , 2011 .
[9] Martin J. Wainwright,et al. Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes , 2010, J. Mach. Learn. Res..
[10] D. Sontag. 1 Introduction to Dual Decomposition for Inference , 2010 .
[11] Christoph Schnörr,et al. Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing , 2012, UAI.
[12] Dmitry M. Malioutov,et al. Lagrangian Relaxation for MAP Estimation in Graphical Models , 2007, ArXiv.
[13] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[14] Tommi S. Jaakkola,et al. Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.
[15] Tomas Werner,et al. Revisiting the Decomposition Approach to Inference in Exponential Families and Graphical Models , 2009 .
[16] Martin J. Wainwright,et al. A new class of upper bounds on the log partition function , 2002, IEEE Transactions on Information Theory.
[17] Tamir Hazan,et al. Tightening Fractional Covering Upper Bounds on the Partition Function for High-Order Region Graphs , 2012, UAI.
[18] Ofer Meshi,et al. An Alternating Direction Method for Dual MAP LP Relaxation , 2011, ECML/PKDD.
[19] I JordanMichael,et al. Graphical Models, Exponential Families, and Variational Inference , 2008 .
[20] Vladimir Kolmogorov,et al. Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[21] C. Michelot. A finite algorithm for finding the projection of a point onto the canonical simplex of ∝n , 1986 .
[22] William T. Freeman,et al. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs , 2001, IEEE Trans. Inf. Theory.
[23] Yair Weiss,et al. MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies , 2007, UAI.
[24] Jörg H. Kappes,et al. OpenGM: A C++ Library for Discrete Graphical Models , 2012, ArXiv.
[25] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[26] Tom Heskes,et al. On the Uniqueness of Loopy Belief Propagation Fixed Points , 2004, Neural Computation.
[27] Michael Patriksson,et al. Ergodic, primal convergence in dual subgradient schemes for convex programming , 1999, Mathematical programming.
[28] Kenneth Steiglitz,et al. Combinatorial Optimization: Algorithms and Complexity , 1981 .
[29] M. Shlezinger. Syntactic analysis of two-dimensional visual signals in the presence of noise , 1976 .
[30] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[31] Michail I. Schlesinger,et al. Stop Condition for Subgradient Minimization in Dual Relaxed (max, +) Problem , 2011, EMMCVPR.
[32] Hanif D. Sherali,et al. Linear Programming and Network Flows , 1977 .
[33] Tomás Werner,et al. A Linear Programming Approach to Max-Sum Problem: A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[34] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[35] Tamir Hazan,et al. Norm-Product Belief Propagation: Primal-Dual Message-Passing for Approximate Inference , 2009, IEEE Transactions on Information Theory.
[36] Tommi S. Jaakkola,et al. Convergence Rate Analysis of MAP Coordinate Minimization Algorithms , 2012, NIPS.
[37] Eric P. Xing,et al. An Augmented Lagrangian Approach to Constrained MAP Inference , 2011, ICML.
[38] Nikos Komodakis,et al. MRF Energy Minimization and Beyond via Dual Decomposition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[39] Christoph Schnörr,et al. Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization , 2011, EMMCVPR.
[40] Qiang Fu,et al. Bethe-ADMM for Tree Decomposition based Parallel MAP Inference , 2013, UAI.
[41] Olga Veksler,et al. Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.