Structural damage detection and assessment using acceleration feedback

This paper presents a method for structural health monitoring using acceleration measurements. In a previous study a method for detecting, locating, and quantifying structural damages has been developed by directly using the time domain structural vibration measurements. However, only displacement and velocity measurements were used in that study. In this paper, acceleration measurements are used as feedback. Because it is more practical to measure acceleration using accelerometers, it is preferable to use acceleration rather than displacement and velocity measurements for the purpose of structural damage detection and assessment. However, using acceleration measurements is more difficult since the effects of different damages can not be decoupled completely as in the cases of displacement and velocity measurements. One approach of circumventing this difficulty is presented and it involves increasing the order of time derivatives of the linear system. The effectiveness of the proposed method using acceleration feedback is evaluated with illustrative examples of a three and an eight-story model. Results obtained are found to be comparable with results from simulations using displacement measurements as feedback.