Developments and future clinical outlook of taxane nanomedicines.

[1]  F. Kiessling,et al.  Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[2]  R. Haag,et al.  Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[3]  S. van Calenbergh,et al.  Well-Defined Polymer-Paclitaxel Prodrugs by a Grafting-from-Drug Approach. , 2016, Angewandte Chemie.

[4]  A. J. Tavares,et al.  Reply to “Evaluation of nanomedicines: stick to the basics” , 2016, Nature Reviews Materials.

[5]  Scott E. McNeil,et al.  Evaluation of nanomedicines: stick to the basics , 2016, Nature Reviews Materials.

[6]  Fabian Kiessling,et al.  Cancer nanomedicine: Is targeting our target? , 2016, Nature reviews. Materials.

[7]  A. Maitra,et al.  Superior therapeutic efficacy of nab-paclitaxel over cremophor-based paclitaxel in locally advanced and metastatic models of human pancreatic cancer , 2016, British Journal of Cancer.

[8]  B. Lambrecht,et al.  pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation , 2016, Proceedings of the National Academy of Sciences.

[9]  S. van Calenbergh,et al.  pH-Degradable Mannosylated Nanogels for Dendritic Cell Targeting. , 2016, Biomacromolecules.

[10]  Heidi Ledford Bankruptcy filing worries developers of nanoparticle cancer drugs , 2016, Nature.

[11]  K. Ulbrich,et al.  Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. , 2016, Chemical reviews.

[12]  Min Liu,et al.  Re-engineering the Immune Response to Metastatic Cancer: Antibody-Recruiting Small Molecules Targeting the Urokinase Receptor. , 2016, Angewandte Chemie.

[13]  M. Kester,et al.  Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. , 2016, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[14]  Asher Mullard DNA tags help the hunt for drugs , 2016, Nature.

[15]  Glen J Weiss,et al.  Phase I Study of PSMA-Targeted Docetaxel-Containing Nanoparticle BIND-014 in Patients with Advanced Solid Tumors , 2016, Clinical Cancer Research.

[16]  N. Pavlova,et al.  The Emerging Hallmarks of Cancer Metabolism. , 2016, Cell metabolism.

[17]  S. van Calenbergh,et al.  Transiently Responsive Block Copolymer Micelles Based on N-(2-Hydroxypropyl)methacrylamide Engineered with Hydrolyzable Ethylcarbonate Side Chains. , 2016, Biomacromolecules.

[18]  Rong Tong,et al.  New Strategies in Cancer Nanomedicine. , 2016, Annual review of pharmacology and toxicology.

[19]  P. Polakis Antibody Drug Conjugates for Cancer Therapy , 2016, Pharmacological Reviews.

[20]  Ahmedin Jemal,et al.  Global Cancer Incidence and Mortality Rates and Trends—An Update , 2015, Cancer Epidemiology, Biomarkers & Prevention.

[21]  M. Pomper,et al.  Nanoconjugation of PSMA-Targeting Ligands Enhances Perinuclear Localization and Improves Efficacy of Delivered Alpha-Particle Emitters against Tumor Endothelial Analogues , 2015, Molecular Cancer Therapeutics.

[22]  W. Saltzman,et al.  Nanomedicine gets personal , 2015, Science Translational Medicine.

[23]  Joshua M. Korn,et al.  High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response , 2015, Nature Medicine.

[24]  Zhiyuan Zhong,et al.  Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy , 2015 .

[25]  Christian Vanhove,et al.  Pretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model , 2015, Oncotarget.

[26]  Christine Allen,et al.  The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. , 2015, Advanced drug delivery reviews.

[27]  D. Bergstrom,et al.  Abstract LB-231: A novel, highly potent HER2-targeted antibody-drug conjugate (ADC) for the treatment of low HER2-expressing tumors and combination with trastuzumab-based regimens in HER2-driven tumors , 2015 .

[28]  D. Neri,et al.  Antibody-Drug Conjugates and Small Molecule-Drug Conjugates: Opportunities and Challenges for the Development of Selective Anticancer Cytotoxic Agents. , 2015, Journal of medicinal chemistry.

[29]  M. Eblan,et al.  Clinical Translation of Nanomedicine. , 2015, Chemical reviews.

[30]  Christina Peters,et al.  Antibody–drug conjugates as novel anti-cancer chemotherapeutics , 2015, Bioscience reports.

[31]  David R. Liu,et al.  Novel selection methods for DNA-encoded chemical libraries. , 2015, Current opinion in chemical biology.

[32]  A. Fernández-Medarde,et al.  Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[33]  P. Couvreur,et al.  Solvent selection causes remarkable shifts of the "Ouzo region" for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. , 2015, Nanoscale.

[34]  Wim E Hennink,et al.  Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles. , 2015, ACS nano.

[35]  Andrew L. Kung,et al.  Examining the utility of patient-derived xenograft mouse models , 2015, Nature Reviews Cancer.

[36]  C. Saisawang,et al.  Full length and protease domain activity of chikungunya virus nsP2 differ from other alphavirus nsP2 proteases in recognition of small peptide substrates , 2015, Bioscience reports.

[37]  E. Wagner,et al.  Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). , 2015, Chemical reviews.

[38]  R. Tsien,et al.  Tumor radiosensitization by monomethyl auristatin E: mechanism of action and targeted delivery. , 2015, Cancer research.

[39]  Jörg Huwyler,et al.  Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[40]  P. Low,et al.  Principles in the design of ligand-targeted cancer therapeutics and imaging agents , 2015, Nature Reviews Drug Discovery.

[41]  Yi Tang,et al.  Natural and engineered production of taxadiene with taxadiene synthase , 2015, Biotechnology and bioengineering.

[42]  W. Hennink,et al.  Degradable ketal-based block copolymer nanoparticles for anticancer drug delivery: a systematic evaluation. , 2015, Biomacromolecules.

[43]  Robert Williams Discontinued in 2013: oncology drugs , 2015, Expert opinion on investigational drugs.

[44]  K. Thurecht,et al.  In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs. , 2014, Biomacromolecules.

[45]  Anna Szarpak-Jankowska,et al.  Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages. , 2014, Acta biomaterialia.

[46]  N. Senzer,et al.  Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors , 2014, Cancer Chemotherapy and Pharmacology.

[47]  Y. Assaraf,et al.  The folate receptor as a rational therapeutic target for personalized cancer treatment. , 2014, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[48]  J. Leroux,et al.  Breakthrough discoveries in drug delivery technologies: the next 30 years. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[49]  Felix Kratz,et al.  A clinical update of using albumin as a drug vehicle - a commentary. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[50]  J. Daguer,et al.  DNA display of fragment pairs as a tool for the discovery of novel biologically active small molecules , 2014, Chemical science.

[51]  Li Tang,et al.  Smart chemistry in polymeric nanomedicine. , 2014, Chemical Society reviews.

[52]  Xing-Jie Liang,et al.  pH-sensitive nano-systems for drug delivery in cancer therapy. , 2014, Biotechnology advances.

[53]  R. Borzilleri,et al.  Antibody-drug conjugates: current status and future directions. , 2014, Drug discovery today.

[54]  Stephanie M. Tortorella,et al.  The significance of transferrin receptors in oncology: the development of functional nano-based drug delivery systems. , 2014, Current drug delivery.

[55]  Yinan Zhong,et al.  Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. , 2014, Biomacromolecules.

[56]  R. Chari,et al.  Antibody-drug conjugates: an emerging concept in cancer therapy. , 2014, Angewandte Chemie.

[57]  D. Neri,et al.  DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries. , 2014, Accounts of chemical research.

[58]  P. Low,et al.  Guiding principles in the design of ligand-targeted nanomedicines. , 2014, Nanomedicine.

[59]  Richard Hoogenboom,et al.  Dual pH- and temperature-responsive RAFT-based block co-polymer micelles and polymer–protein conjugates with transient solubility , 2014 .

[60]  Fabian Kiessling,et al.  Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. , 2014, Nano letters.

[61]  Manuel Hidalgo,et al.  Patient-derived xenograft models: an emerging platform for translational cancer research. , 2014, Cancer discovery.

[62]  Seiji Miura,et al.  Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[63]  Sabrina Oliveira,et al.  Targeting tumors with nanobodies for cancer imaging and therapy. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[64]  G. Zhai,et al.  Polymer-drug conjugates: present state of play and future perspectives. , 2013, Drug discovery today.

[65]  Fabian Kiessling,et al.  Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. , 2013, Current opinion in biotechnology.

[66]  R. Jain,et al.  Strategies for advancing cancer nanomedicine. , 2013, Nature materials.

[67]  E. Winer,et al.  Trastuzumab Emtansine: A Novel Antibody–Drug Conjugate for HER2-Positive Breast Cancer , 2013, Clinical Cancer Research.

[68]  R. Kok,et al.  Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. , 2013, Advanced drug delivery reviews.

[69]  D. Yardley nab-Paclitaxel mechanisms of action and delivery. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[70]  Derek S. Chan,et al.  SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice , 2013, Gut.

[71]  V. Torchilin,et al.  Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety , 2013, Proceedings of the National Academy of Sciences.

[72]  P. Low,et al.  Effect of folate-targeted nanoparticle size on their rates of penetration into solid tumors. , 2013, ACS nano.

[73]  V. Torchilin,et al.  Current trends in the use of liposomes for tumor targeting. , 2013, Nanomedicine.

[74]  R. Mumper,et al.  A critical review of lipid-based nanoparticles for taxane delivery. , 2013, Cancer letters.

[75]  J. Laurence,et al.  Conjugation site heterogeneity causes variable electrostatic properties in Fc conjugates. , 2013, Bioconjugate chemistry.

[76]  C. van Nostrum,et al.  Π-π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. , 2013, Biomacromolecules.

[77]  Dongwon Lee,et al.  Ketal containing amphiphilic block copolymer micelles as pH-sensitive drug carriers. , 2013, International journal of pharmaceutics.

[78]  Asher Mullard Maturing antibody–drug conjugate pipeline hits 30 , 2013, Nature Reviews Drug Discovery.

[79]  Michael Riediker,et al.  Therapeutic nanoparticles in clinics and under clinical evaluation. , 2013, Nanomedicine.

[80]  Peng Zhan,et al.  Current drug research on PEGylation with small molecular agents , 2013 .

[81]  R. Mumper,et al.  Paclitaxel Nano-Delivery Systems: A Comprehensive Review. , 2013, Journal of nanomedicine & nanotechnology.

[82]  M. Stenzel,et al.  Acid-degradable polymers for drug delivery: a decade of innovation. , 2013, Chemical communications.

[83]  Dario Neri,et al.  Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. , 2013, Angewandte Chemie.

[84]  Andreas Wicki,et al.  Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. , 2012, The Lancet. Oncology.

[85]  S. Svenson,et al.  Clinical translation of nanomedicines , 2012 .

[86]  J. Turánek,et al.  Liposomal paclitaxel formulations. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[87]  Yanjiao Jiang,et al.  Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects , 2012 .

[88]  R. Pazdur,et al.  U.S. Food and Drug Administration Approval Summary: Brentuximab Vedotin for the Treatment of Relapsed Hodgkin Lymphoma or Relapsed Systemic Anaplastic Large-Cell Lymphoma , 2012, Clinical Cancer Research.

[89]  K. G. Rajeev,et al.  Branched multifunctional polyether polyketals: variation of ketal group structure enables unprecedented control over polymer degradation in solution and within cells. , 2012, Journal of the American Chemical Society.

[90]  M. Stenzel,et al.  Acid Degradable Cross-Linked Micelles for the Delivery of Cisplatin: A Comparison with Nondegradable Cross-Linker , 2012 .

[91]  R. Grubbs,et al.  Synthesis and cell adhesive properties of linear and cyclic RGD functionalized polynorbornene thin films. , 2012, Biomacromolecules.

[92]  J. Leroux,et al.  pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. , 2012, Advanced drug delivery reviews.

[93]  T. Yoshikawa,et al.  Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer , 2012, Investigational New Drugs.

[94]  F. Kiessling,et al.  Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[95]  Nicolas Bertrand,et al.  The journey of a drug-carrier in the body: an anatomo-physiological perspective. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[96]  Tingyun Yang,et al.  Novel cathepsin B-sensitive paclitaxel conjugate: Higher water solubility, better efficacy and lower toxicity. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[97]  Emanuel Fleige,et al.  Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. , 2012, Advanced drug delivery reviews.

[98]  Y. Barenholz Doxil®--the first FDA-approved nano-drug: lessons learned. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[99]  Aik Choon Tan,et al.  Patient-derived tumour xenografts as models for oncology drug development , 2012, Nature Reviews Clinical Oncology.

[100]  Omid C. Farokhzad,et al.  α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. , 2012, ACS nano.

[101]  Yitao Wang,et al.  Polymeric micelles drug delivery system in oncology. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[102]  Robert Langer,et al.  Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile , 2012, Science Translational Medicine.

[103]  H. Klocker,et al.  High expression of prostate-specific membrane antigen in the tumor-associated neo-vasculature is associated with worse prognosis in squamous cell carcinoma of the oral cavity , 2012, Modern Pathology.

[104]  G. Battaglia,et al.  Endocytosis at the nanoscale. , 2012, Chemical Society reviews.

[105]  Karen L Wooley,et al.  Design of polymeric nanoparticles for biomedical delivery applications. , 2012, Chemical Society reviews.

[106]  J. Szebeni,et al.  Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[107]  Omid C Farokhzad,et al.  Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. , 2012, Chemical Society reviews.

[108]  D. Tuveson,et al.  nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. , 2012, Cancer discovery.

[109]  J. Pedraz,et al.  Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research , 2012, Clinical and Translational Oncology.

[110]  J. Kopeček,et al.  Hyaluronan Oligomers-HPMA Copolymer Conjugates for Targeting Paclitaxel to CD44-Overexpressing Ovarian Carcinoma , 2012, Pharmaceutical Research.

[111]  Resham Bhattacharya,et al.  Switching the targeting pathways of a therapeutic antibody by nanodesign. , 2012, Angewandte Chemie.

[112]  P. Low,et al.  Characterization of in vivo disulfide-reduction mediated drug release in mouse kidneys. , 2012, Molecular pharmaceutics.

[113]  Hamidreza Ghandehari,et al.  Polymeric conjugates for drug delivery. , 2012, Chemistry of materials : a publication of the American Chemical Society.

[114]  A. Brenner,et al.  Safety, Pharmacokinetics, and Activity of GRN1005, a Novel Conjugate of Angiopep-2, a Peptide Facilitating Brain Penetration, and Paclitaxel, in Patients with Advanced Solid Tumors , 2011, Molecular Cancer Therapeutics.

[115]  Daniel A. Heller,et al.  Treating metastatic cancer with nanotechnology , 2011, Nature Reviews Cancer.

[116]  A. Maitra,et al.  Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[117]  K. Miyazono,et al.  Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. , 2011, Nature nanotechnology.

[118]  M. Sliwkowski,et al.  Trastuzumab Emtansine: A Unique Antibody-Drug Conjugate in Development for Human Epidermal Growth Factor Receptor 2–Positive Cancer , 2011, Clinical Cancer Research.

[119]  C. Marquis,et al.  Acid Degradable and Biocompatible Polymeric Nanoparticles for the Potential Codelivery of Therapeutic Agents , 2011 .

[120]  Robert Langer,et al.  Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. , 2011, Biomaterials.

[121]  Carlos Rinaldi,et al.  EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. , 2011, ACS nano.

[122]  Kinam Park,et al.  Targeted drug delivery to tumors: myths, reality and possibility. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[123]  Ajit S Narang,et al.  Role of tumor vascular architecture in drug delivery. , 2011, Advanced drug delivery reviews.

[124]  Huanjie Shao,et al.  Improved Response to nab-Paclitaxel Compared with Cremophor-Solubilized Paclitaxel is Independent of Secreted Protein Acidic and Rich in Cysteine Expression in Non-Small Cell Lung Cancer , 2011, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[125]  R. Markwald,et al.  Hyaluronan–CD44 interactions as potential targets for cancer therapy , 2011, The FEBS journal.

[126]  R. Lupu,et al.  Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. , 2011, Biomaterials.

[127]  C. Sima,et al.  A phase 2 study of weekly albumin-bound paclitaxel (Abraxane®) given as a two-hour infusion , 2011, Cancer Chemotherapy and Pharmacology.

[128]  Jinming Gao,et al.  Nanonization strategies for poorly water-soluble drugs. , 2011, Drug discovery today.

[129]  Kirsten Sandvig,et al.  Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies , 2011 .

[130]  Jun Fang,et al.  The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. , 2011, Advanced drug delivery reviews.

[131]  Vladimir Torchilin,et al.  Tumor delivery of macromolecular drugs based on the EPR effect. , 2011, Advanced drug delivery reviews.

[132]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[133]  C. Ricciardelli,et al.  Role of Versican, Hyaluronan and CD44 in Ovarian Cancer Metastasis , 2011, International journal of molecular sciences.

[134]  F. Dosio,et al.  Macromolecules as taxane delivery systems , 2011, Expert opinion on drug delivery.

[135]  Betty Y. S. Kim,et al.  Current concepts: Nanomedicine , 2010 .

[136]  Robert Langer,et al.  On firm ground: IP protection of therapeutic nanoparticles , 2010, Nature Biotechnology.

[137]  Robert A. Smith,et al.  Angiogenesis in old-aged subjects after ischemic stroke: a cautionary note for investigators , 2010, Journal of angiogenesis research.

[138]  John P Leonard,et al.  Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. , 2010, The New England journal of medicine.

[139]  Lin Yu,et al.  Effects of immobilizing sites of RGD peptides in amphiphilic block copolymers on efficacy of cell adhesion. , 2010, Biomaterials.

[140]  R. Jain,et al.  Delivering nanomedicine to solid tumors , 2010, Nature Reviews Clinical Oncology.

[141]  C. Dumontet,et al.  Microtubule-binding agents: a dynamic field of cancer therapeutics , 2010, Nature Reviews Drug Discovery.

[142]  E. Oroudjev,et al.  Maytansine and Cellular Metabolites of Antibody-Maytansinoid Conjugates Strongly Suppress Microtubule Dynamics by Binding to Microtubules , 2010, Molecular Cancer Therapeutics.

[143]  C. Bennett,et al.  Polysorbate 80 hypersensitivity reactions: a renewed call to action , 2010 .

[144]  U. Schubert,et al.  Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. , 2010, Angewandte Chemie.

[145]  Gert Storm,et al.  Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release , 2010, Pharmaceutical Research.

[146]  Hemant Sarin,et al.  Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability , 2010, Journal of angiogenesis research.

[147]  S. Curley,et al.  Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis , 2010, Proceedings of the National Academy of Sciences.

[148]  B. Jo,et al.  Polymer prodrug approaches applied to paclitaxel , 2010 .

[149]  J. Nie,et al.  Synthesis and self-assembly behavior of pH-responsive amphiphilic copolymers containing ketal functional groups , 2010 .

[150]  Mark E. Davis,et al.  Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles , 2010, Nature.

[151]  C. van Nostrum,et al.  Micelles based on HPMA copolymers. , 2010, Advanced drug delivery reviews.

[152]  J. Kopeček,et al.  HPMA copolymers: origins, early developments, present, and future. , 2010, Advanced drug delivery reviews.

[153]  María J. Vicent,et al.  Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. , 2009, Advanced drug delivery reviews.

[154]  Ruth Duncan,et al.  Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. , 2009, Advanced drug delivery reviews.

[155]  Bin Zhou,et al.  Synthesis and assembly of a full‐length human monoclonal antibody in algal chloroplasts , 2009, Biotechnology and bioengineering.

[156]  S. Perrier,et al.  Bioapplications of RAFT polymerization. , 2009, Chemical reviews.

[157]  C. Allen,et al.  Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[158]  R. Jankowiak,et al.  Electrochemically deposited metal nanoparticles for enhancing the performance of microfluidic MEMS in biochemical analysis , 2009 .

[159]  Matthew I. Gibson,et al.  Postpolymerization modification of poly(pentafluorophenyl methacrylate): Synthesis of a diverse water‐soluble polymer library , 2009 .

[160]  F. Szoka,et al.  Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. , 2009, Accounts of chemical research.

[161]  A. Misra,et al.  Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(gamma-benzyl glutamate) copolymers. , 2009, Biomacromolecules.

[162]  Eun Seong Lee,et al.  In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. , 2009, Molecular pharmaceutics.

[163]  David Allard,et al.  Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic Cancer , 2009, Science.

[164]  P. Couvreur,et al.  Nanocarriers’ entry into the cell: relevance to drug delivery , 2009, Cellular and Molecular Life Sciences.

[165]  P. Soon-Shiong,et al.  SPARC Expression Correlates with Tumor Response to Albumin-Bound Paclitaxel in Head and Neck Cancer Patients. , 2009, Translational oncology.

[166]  D. Kerr,et al.  Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. , 2009, International journal of oncology.

[167]  P. Senter Potent antibody drug conjugates for cancer therapy. , 2009, Current opinion in chemical biology.

[168]  M. Suntharalingam,et al.  Neoadjuvant paclitaxel poliglumex, cisplatin, and radiation for esophageal cancer: A phase II trial. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[169]  E. Miele,et al.  Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer , 2009, International journal of nanomedicine.

[170]  W. Hennink,et al.  Reduction-sensitive polymers and bioconjugates for biomedical applications. , 2009, Biomaterials.

[171]  Robert Langer,et al.  Impact of nanotechnology on drug delivery. , 2009, ACS nano.

[172]  John M Lambert,et al.  Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. , 2008, Cancer research.

[173]  P. Choyke,et al.  Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. , 2008, Nanomedicine.

[174]  D. Mavroudis,et al.  Paclitaxel and docetaxel in the treatment of breast cancer , 2008 .

[175]  H. Riechelmann,et al.  Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. , 2008, Oral oncology.

[176]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[177]  R. Béliveau,et al.  Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep‐2 , 2008, British journal of pharmacology.

[178]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[179]  M. Stenzel RAFT polymerization: an avenue to functional polymeric micelles for drug delivery. , 2008, Chemical communications.

[180]  T Lammers,et al.  Tumour-targeted nanomedicines: principles and practice , 2008, British Journal of Cancer.

[181]  Leaf Huang,et al.  Pharmacokinetics and biodistribution of nanoparticles. , 2008, Molecular pharmaceutics.

[182]  Jianjun Cheng,et al.  Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. , 2008, Angewandte Chemie.

[183]  F. Szoka,et al.  Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. , 2008, Molecular pharmaceutics.

[184]  K. Hara,et al.  In vivo antitumor activity of novel water-soluble taxoids. , 2008, Biological & pharmaceutical bulletin.

[185]  Patrick Soon-Shiong,et al.  Protein nanoparticles as drug carriers in clinical medicine. , 2008, Advanced drug delivery reviews.

[186]  Chun Xing Li,et al.  Polymer-drug conjugates: recent development in clinical oncology. , 2008, Advanced drug delivery reviews.

[187]  T. Park,et al.  Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. , 2008, Bioconjugate chemistry.

[188]  L. Zhang,et al.  Nanoparticles in Medicine: Therapeutic Applications and Developments , 2008, Clinical pharmacology and therapeutics.

[189]  R. Chari Targeted cancer therapy: conferring specificity to cytotoxic drugs. , 2008, Accounts of chemical research.

[190]  M. Christian,et al.  Intraperitoneal chemotherapy for women with epithelial ovarian cancer. , 2008, The oncologist.

[191]  Sung-Bae Kim,et al.  Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer , 2008, Breast Cancer Research and Treatment.

[192]  David A. Tuveson,et al.  Maximizing mouse cancer models , 2007, Nature Reviews Cancer.

[193]  Xuesi Chen,et al.  RGD peptide grafted biodegradable amphiphilic triblock copolymer poly(glutamic acid)‐b‐poly(L‐lactide)‐b‐poly(glutamic acid): Synthesis and self‐assembly , 2007 .

[194]  D. Kingston The shape of things to come: structural and synthetic studies of taxol and related compounds. , 2007, Phytochemistry.

[195]  Robert Langer,et al.  An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. , 2006, Angewandte Chemie.

[196]  Kazunori Kataoka,et al.  Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. , 2006, Pharmacology & therapeutics.

[197]  J. Singer,et al.  Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer–drug conjugate , 2006, International journal of nanomedicine.

[198]  Ruth Duncan,et al.  Polymer conjugates as anticancer nanomedicines , 2006, Nature Reviews Cancer.

[199]  Y. Matsumura,et al.  NK105, a paclitaxel-incorporating micellar nanoparticle, is a more potent radiosensitising agent compared to free paclitaxel , 2006, British Journal of Cancer.

[200]  D. Iannitti,et al.  Paclitaxel Poliglumex (PPX-Xyotax) and Concurrent Radiation for Esophageal and Gastric Cancer: A Phase I Study , 2006, American journal of clinical oncology.

[201]  I. Tannock,et al.  Drug penetration in solid tumours , 2006, Nature Reviews Cancer.

[202]  G. Jayson,et al.  Method validation and preliminary qualification of pharmacodynamic biomarkers employed to evaluate the clinical efficacy of an antisense compound (AEG35156) targeted to the X-linked inhibitor of apoptosis protein XIAP , 2006, British Journal of Cancer.

[203]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[204]  E. Holland,et al.  Genetically engineered models have advantages over xenografts for preclinical studies. , 2006, Cancer research.

[205]  Patrick Soon-Shiong,et al.  Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.

[206]  Felix Kratz,et al.  Polymer therapeutics: concepts and applications. , 2006, Angewandte Chemie.

[207]  J. Singer Paclitaxel poliglumex (XYOTAX, CT-2103): a macromolecular taxane. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[208]  Marie-Hélène Dufresne,et al.  Block copolymer micelles: preparation, characterization and application in drug delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[209]  S. Armes,et al.  pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. , 2005, Journal of the American Chemical Society.

[210]  D. Bodkin,et al.  Efficacy and safety of paclitaxel poliglumex as first-line chemotherapy in patients at high risk with advanced-stage non-small-cell lung cancer: results of a phase II study. , 2005, Clinical lung cancer.

[211]  Michael Hawkins,et al.  Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[212]  N. Murthy,et al.  Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle. , 2005, Bioconjugate chemistry.

[213]  E. Perez,et al.  North Central Cancer Treatment Group N0531: Phase II Trial of weekly albumin-bound paclitaxel (ABI-007; Abraxane) in combination with gemcitabine in patients with metastatic breast cancer. , 2005, Clinical breast cancer.

[214]  Philip S Low,et al.  Folate receptor-mediated drug targeting: from therapeutics to diagnostics. , 2005, Journal of pharmaceutical sciences.

[215]  Brian Samuels,et al.  Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[216]  Anna M Wu,et al.  Arming antibodies: prospects and challenges for immunoconjugates , 2005, Nature Biotechnology.

[217]  B. Overmoyer,et al.  Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[218]  Michael Hawkins,et al.  Comparative Preclinical and Clinical Pharmacokinetics of a Cremophor-Free, Nanoparticle Albumin-Bound Paclitaxel (ABI-007) and Paclitaxel Formulated in Cremophor (Taxol) , 2005, Clinical Cancer Research.

[219]  G. Watkins,et al.  Increased levels of SPARC (osteonectin) in human breast cancer tissues and its association with clinical outcomes. , 2005, Prostaglandins, leukotrienes, and essential fatty acids.

[220]  Wim E Hennink,et al.  Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[221]  P. Parsons,et al.  Novel markers for poor prognosis in head and neck cancer , 2005, International journal of cancer.

[222]  Alan Gordon,et al.  Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as first-line chemotherapy for ovarian carcinoma. , 2004, Journal of the National Cancer Institute.

[223]  Richard Pazdur,et al.  Accelerated approval of oncology products: a decade of experience. , 2004, Journal of the National Cancer Institute.

[224]  Odile Dechy-Cabaret,et al.  Controlled ring-opening polymerization of lactide and glycolide. , 2004, Chemical reviews.

[225]  Kristian Pietras,et al.  High interstitial fluid pressure — an obstacle in cancer therapy , 2004, Nature Reviews Cancer.

[226]  K. Hunter,et al.  Modeling metastasis in vivo. , 2004, Carcinogenesis.

[227]  Tae-You Kim,et al.  Phase I and Pharmacokinetic Study of Genexol-PM, a Cremophor-Free, Polymeric Micelle-Formulated Paclitaxel, in Patients with Advanced Malignancies , 2004, Clinical Cancer Research.

[228]  K. Ulbrich,et al.  Polymeric anticancer drugs with pH-controlled activation. , 2004, Advanced drug delivery reviews.

[229]  X. Geng,et al.  Tumor-specific novel taxoid-monoclonal antibody conjugates. , 2004, Journal of medicinal chemistry.

[230]  R. Haag,et al.  Supramolecular drug-delivery systems based on polymeric core-shell architectures. , 2004, Angewandte Chemie.

[231]  E Helene Sage,et al.  Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients. , 2003, Cancer research.

[232]  F. Loganzo,et al.  MAC-321, a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. , 2003, Molecular cancer therapeutics.

[233]  J. Verweij,et al.  Pharmacological Effects of Formulation Vehicles , 2003, Clinical pharmacokinetics.

[234]  J. Reddy,et al.  Synthesis and biological evaluation of EC20: a new folate-derived, (99m)Tc-based radiopharmaceutical. , 2002, Bioconjugate chemistry.

[235]  Patrick Soon-Shiong,et al.  Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[236]  E. Edelman,et al.  Carrier proteins determine local pharmacokinetics and arterial distribution of paclitaxel. , 2001, Journal of pharmaceutical sciences.

[237]  J Verweij,et al.  Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. , 2001, European journal of cancer.

[238]  D. Kingston Taxol, a molecule for all seasons , 2001 .

[239]  R B Greenwald,et al.  PEG drugs: an overview. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[240]  H. S. Oh,et al.  In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[241]  F. Szoka,et al.  Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. , 2001, Cancer research.

[242]  Z. Lu,et al.  HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[243]  D. Kingston Recent Advances in the Chemistry of Taxol1,2 , 2000 .

[244]  R. J. Lee,et al.  Targeted drug delivery via the folate receptor. , 2000, Advanced drug delivery reviews.

[245]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[246]  T. Okano,et al.  Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[247]  G A Orr,et al.  Characterization of the Taxol Binding Site on the Microtubule , 1999, The Journal of Biological Chemistry.

[248]  J. Double,et al.  Pharmacokinetics of PK1 and doxorubicin in experimental colon tumor models with differing responses to PK1. , 1999, Clinical cancer research : an official journal of the American Association for Cancer Research.

[249]  A. Skubitz,et al.  CD44 and β1 Integrin Mediate Ovarian Carcinoma Cell Adhesion to Peritoneal Mesothelial Cells , 1999 .

[250]  R. Panchagnula Pharmaceutical aspects of paclitaxel , 1998 .

[251]  Chun Xing Li,et al.  Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. , 1998, Cancer research.

[252]  R. Jain,et al.  Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[253]  M. Piccart,et al.  Phase II trials of docetaxel (Taxotere) in advanced ovarian cancer--an updated overview. , 1997, European journal of cancer.

[254]  Y. Shyr,et al.  Paclitaxel plus carboplatin in advanced non-small-cell lung cancer: a phase II trial. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[255]  J. Beijnen,et al.  Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. , 1996, Cancer research.

[256]  Kazunori Kataoka,et al.  Block copolymer micelles as long-circulating drug vehicles , 1995 .

[257]  R. Wade,et al.  How does taxol stabilize microtubules? , 1995, Current Biology.

[258]  A. Oosterom,et al.  Docetaxel (Taxotere), a review of preclinical and clinical experience. Part II: Clinical experience. , 1995 .

[259]  D. Bolikal,et al.  Highly water soluble taxol derivatives: 2′-polyethyleneglycol esters as potential prodrugs , 1994 .

[260]  J. Verweij,et al.  Paclitaxel (Taxol) and docetaxel (Taxotere): not simply two of a kind. , 1994, Annals of oncology : official journal of the European Society for Medical Oncology.

[261]  E. Eisenhauer,et al.  Clinical toxicities encountered with paclitaxel (Taxol). , 1993, Seminars in oncology.

[262]  D. Guénard,et al.  [Taxotere: from yew's needles to clinical practice]. , 1993, Bulletin du cancer.

[263]  D. Guénard,et al.  Taxol and taxotere: discovery, chemistry, and structure-activity relationships , 1993 .

[264]  J. Díaz,et al.  Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition. , 1993, Biochemistry.

[265]  D. Moore,et al.  Phase I trial of Taxotere: five-day schedule. , 1992, Journal of the National Cancer Institute.

[266]  C. Underhill,et al.  CD44: the hyaluronan receptor. , 1992, Journal of cell science.

[267]  E. Blume Agreement to develop Taxotere expected in April. , 1992, Journal of the National Cancer Institute.

[268]  A. Ahond,et al.  Première hémisynthèse d'un composé de type taxane porteur d'un groupement oxétane en 4(20),5. , 1991 .

[269]  D. Kingston,et al.  The chemistry of taxol. , 1991, Pharmacology & therapeutics.

[270]  Cragg Gm,et al.  Taxol: the supply issue. , 1991 .

[271]  S. Harusawa,et al.  A synthesis of taxusin , 1988 .

[272]  R K Jain,et al.  Determinants of tumor blood flow: a review. , 1988, Cancer research.

[273]  James Lin,et al.  Convergence with mutual kinetic resolution. 1. Studies defining methodology for the taxol C/D ring fragment and synthesis of the A ring fragment , 1987 .

[274]  R. Lipton,et al.  Phase I clinical and pharmacokinetic study of taxol. , 1987, Cancer research.

[275]  A. Amarasekara,et al.  A photochemical approach to the taxanes , 1985 .

[276]  E. L. Gaden Biochemical engineering and biotechnology handbook: by Bernard Atkinson and Ferda Mavituna, Macmillan Publishers Ltd, 1983. £50 (xiv + 1 119 pages) ISBN 0 333 33274 1 , 1983 .

[277]  Jennifer I. Hare,et al.  Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. , 2017, Advanced drug delivery reviews.

[278]  Tian Zhang,et al.  Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. , 2017, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[279]  A. Jemal,et al.  Cancer statistics, 2016 , 2016, CA: a cancer journal for clinicians.

[280]  Diwei Ho,et al.  Dose-Dependent Therapeutic Distinction between Active and Passive Targeting Revealed Using Transferrin-Coated PGMA Nanoparticles. , 2016, Small.

[281]  R. Jones,et al.  Cytotoxic chemotherapy: clinical aspects , 2016 .

[282]  W. Hennink,et al.  Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. , 2015, Biomaterials.

[283]  S. Feng,et al.  Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. , 2015, Biomaterials.

[284]  John C Kraft,et al.  Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. , 2014, Journal of pharmaceutical sciences.

[285]  J. Berdeja Lorvotuzumab mertansine: antibody-drug-conjugate for CD56+ multiple myeloma. , 2014, Frontiers in bioscience.

[286]  A. Lluch,et al.  Treatment innovations for metastatic breast cancer: nanoparticle albumin-bound (NAB) technology targeted to tumors. , 2014, Critical reviews in oncology/hematology.

[287]  T. Sugai,et al.  Triazoyl-phenyl linker system enhancing the aqueous solubility of a molecular probe and its efficiency in affinity labeling of a target protein for jasmonate glucoside. , 2013, Bioorganic & medicinal chemistry letters.

[288]  D. Fulton,et al.  Making polymeric nanoparticles stimuli-responsive with dynamic covalent bonds , 2013 .

[289]  Xin Zhang,et al.  In Vivo study of ligament-bone healing after anterior cruciate ligament reconstruction using autologous tendons with mesenchymal stem cells affinity peptide conjugated electrospun nanofibrous scaffold , 2013 .

[290]  Martina H. Stenzel,et al.  Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks , 2012 .

[291]  Y. Manabe,et al.  "Click-made" biaryl-linker improving efficiency in protein labelling for the membrane target protein of a bioactive compound. , 2011, Organic & biomolecular chemistry.

[292]  Adam E. Smith,et al.  Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization , 2010 .

[293]  Laurent Ducry,et al.  Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. , 2010, Bioconjugate chemistry.

[294]  S. Ellard,et al.  Survival outcome and cost-effectiveness with docetaxel and paclitaxel in patients with metastatic breast cancer: a population-based evaluation. , 2008, Annals of oncology : official journal of the European Society for Medical Oncology.

[295]  S. Ross,et al.  Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. , 2007, Cancer research.

[296]  P. Herrlich,et al.  CD44: From adhesion molecules to signalling regulators , 2003, Nature Reviews Molecular Cell Biology.

[297]  M. Gottesman,et al.  Multidrug resistance in cancer: role of ATP–dependent transporters , 2002, Nature Reviews Cancer.

[298]  M. Bissery,et al.  Docetaxel (Taxotere): a review of preclinical and clinical experience. Part I: Preclinical experience. , 1995, Anti-cancer drugs.

[299]  G. Winter,et al.  Making antibodies by phage display technology. , 1994, Annual review of immunology.

[300]  G. Pietersz,et al.  Antibody-targeted drugs for the therapy of cancer. , 1994, Journal of drug targeting.

[301]  D. B. Rawlins,et al.  Toward the synthesis of the taxol C,D, ring system: Photolysis of α-methoxy ketones , 1992 .

[302]  P. Potier,et al.  Mise en Évidence de Nouveaux Analogues du Taxol Extraits de Taxus baccata , 1984 .