The Baxter–Bazhanov–Stroganov model: separation of variables and the Baxter equation

The Baxter–Bazhanov–Stroganov model (also known as the τ(2) model) has attracted much interest because it provides a tool for solving the integrable chiral -Potts model. It can be formulated as a face spin model or via cyclic L-operators. Using the latter formulation and the Sklyanin–Kharchev–Lebedev approach, we give the explicit derivation of the eigenvectors of the component Bn(λ) of the monodromy matrix for the fully inhomogeneous chain of finite length. For the periodic chain, we obtain the Baxter T-Q-equations via separation of variables. The functional relations for the transfer matrices of the τ(2) model guarantee nontrivial solutions to the Baxter equations. For the N = 2 case, which is the free fermion point of a generalized Ising model, the Baxter equations are solved explicitly.

[1]  S. Kharchev,et al.  04 06 5 v 1 1 0 A pr 2 00 0 Eigenfunctions of GL ( N , R ) Toda chain : The Mellin-Barnes representation , 2008 .

[2]  N. Iorgov Eigenvectors of Open Bazhanov-Stroganov Quantum Chain , 2006, nlin/0602010.

[3]  O. Lisovyy Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov τ2-model for N = 2 , 2005, nlin/0512026.

[4]  V. Shadura,et al.  Alternative method of calculating the eigenvalues of the transfer matrix of the τ2 model for N = 2 , 2005 .

[5]  S. Pakuliak,et al.  The Bazhanov Stroganov model from 3D approach , 2005, nlin/0505019.

[6]  R. Baxter The Order Parameter of the Chiral Potts Model , 2005, Physical review letters.

[7]  N. Iorgov,et al.  Wave functions of the toda chain with boundary interaction , 2004, Theoretical and Mathematical Physics.

[8]  R. Baxter Transfer Matrix Functional Relations for the Generalized τ2 (tq) Model , 2004, cond-mat/0409493.

[9]  Rafael I. Nepomechie Functional Relations and Bethe Ansatz for the XXZ Chain , 2002, hep-th/0211001.

[10]  S. Kharchev,et al.  Unitary Representations of Uq(??}(2,ℝ)),¶the Modular Double and the Multiparticle q-Deformed¶Toda Chain , 2001, hep-th/0102180.

[11]  Helen Au-Yang,et al.  Baxter's Solution for the Free Energy of the Chiral Potts Model , 2001 .

[12]  S. Kharchev,et al.  Integral representations for the eigenfunctions of quantum open and periodic Toda chains from the QISM formalism , 2000, hep-th/0007040.

[13]  S. Kharchev,et al.  Fe b 20 01 ITEP-TH-8 / 01 Unitary representations of U q ( sl ( 2 , R ) ) , the modular double , and the multiparticle q-deformed Toda chains , 2001 .

[14]  I. Korepanov The method of vacuum vectors in the theory of Yang - Baxter equation , 2000, nlin/0010024.

[15]  S. Kharchev,et al.  Eigenfunctions of GL(N, ℝ) Toda chain: Mellin-Barnes representation , 2000, hep-th/0004065.

[16]  S. Kharchev,et al.  Integral Representation for the Eigenfunctions of a Quantum Periodic Toda Chain , 1999, hep-th/9910265.

[17]  I. Korepanov Hidden symmetries in the 6-vertex model of statistical physics , 1994, hep-th/9410066.

[18]  R. Baxter Chiral Potts model with skewed boundary conditions , 1993 .

[19]  R. Baxter,et al.  New solvable lattice models in three dimensions , 1992 .

[20]  V. Tarasov CYCLIC MONODROMY MATRICES FOR THE R-MATRIX OF THE SIX-VERTEX MODEL AND THE CHIRAL POTTS MODEL WITH FIXED SPIN BOUNDARY CONDITIONS , 1992 .

[21]  E. Sklyanin Quantum Inverse Scattering Method. Selected Topics , 1992, hep-th/9211111.

[22]  B. McCoy,et al.  Excitation spectrum and phase structure of the chiral Potts model , 1990 .

[23]  Evgeny Sklyanin FUNCTIONAL BETHE ANSATZ , 1990 .

[24]  V. Tarasov Transfer matrix of the superintegrable chiral Potts model. Bethe ansatz spectrum , 1990 .

[25]  R. Baxter Chiral Potts model: Eigenvalues of the transfer matrix , 1990 .

[26]  R. Baxter,et al.  FUNCTIONAL RELATIONS FOR TRANSFER MATRICES OF THE CHIRAL POTTS MODEL , 1990 .

[27]  Y. Stroganov,et al.  Chiral Potts model as a descendant of the six-vertex model , 1990 .

[28]  R. Baxter Superintegrable chiral Potts model: Thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian , 1989 .

[29]  N. Reshetikhin,et al.  Critical Rsos Models and Conformal Field Theory , 1989 .

[30]  B. McCoy,et al.  Eigenvalue Spectrum of the Superintegrable Chiral Potts Model , 1989 .

[31]  E. Sklyanin The quantum Toda chain , 1987 .

[32]  N. Reshetikhin,et al.  Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum , 1987 .

[33]  V. Korepin,et al.  Quantum inverse scattering method , 1982 .

[34]  Evgeny Sklyanin,et al.  QUANTUM SPECTRAL TRANSFORM METHOD. RECENT DEVELOPMENTS , 1982 .

[35]  M. Gutzwiller The quantum mechanical Toda lattice, II , 1980 .

[36]  Tobias J. Hagge,et al.  Physics , 1929, Nature.