The Baxter–Bazhanov–Stroganov model: separation of variables and the Baxter equation
暂无分享,去创建一个
[1] S. Kharchev,et al. 04 06 5 v 1 1 0 A pr 2 00 0 Eigenfunctions of GL ( N , R ) Toda chain : The Mellin-Barnes representation , 2008 .
[2] N. Iorgov. Eigenvectors of Open Bazhanov-Stroganov Quantum Chain , 2006, nlin/0602010.
[3] O. Lisovyy. Transfer matrix eigenvectors of the Baxter–Bazhanov–Stroganov τ2-model for N = 2 , 2005, nlin/0512026.
[4] V. Shadura,et al. Alternative method of calculating the eigenvalues of the transfer matrix of the τ2 model for N = 2 , 2005 .
[5] S. Pakuliak,et al. The Bazhanov Stroganov model from 3D approach , 2005, nlin/0505019.
[6] R. Baxter. The Order Parameter of the Chiral Potts Model , 2005, Physical review letters.
[7] N. Iorgov,et al. Wave functions of the toda chain with boundary interaction , 2004, Theoretical and Mathematical Physics.
[8] R. Baxter. Transfer Matrix Functional Relations for the Generalized τ2 (tq) Model , 2004, cond-mat/0409493.
[9] Rafael I. Nepomechie. Functional Relations and Bethe Ansatz for the XXZ Chain , 2002, hep-th/0211001.
[10] S. Kharchev,et al. Unitary Representations of Uq(??}(2,ℝ)),¶the Modular Double and the Multiparticle q-Deformed¶Toda Chain , 2001, hep-th/0102180.
[11] Helen Au-Yang,et al. Baxter's Solution for the Free Energy of the Chiral Potts Model , 2001 .
[12] S. Kharchev,et al. Integral representations for the eigenfunctions of quantum open and periodic Toda chains from the QISM formalism , 2000, hep-th/0007040.
[13] S. Kharchev,et al. Fe b 20 01 ITEP-TH-8 / 01 Unitary representations of U q ( sl ( 2 , R ) ) , the modular double , and the multiparticle q-deformed Toda chains , 2001 .
[14] I. Korepanov. The method of vacuum vectors in the theory of Yang - Baxter equation , 2000, nlin/0010024.
[15] S. Kharchev,et al. Eigenfunctions of GL(N, ℝ) Toda chain: Mellin-Barnes representation , 2000, hep-th/0004065.
[16] S. Kharchev,et al. Integral Representation for the Eigenfunctions of a Quantum Periodic Toda Chain , 1999, hep-th/9910265.
[17] I. Korepanov. Hidden symmetries in the 6-vertex model of statistical physics , 1994, hep-th/9410066.
[18] R. Baxter. Chiral Potts model with skewed boundary conditions , 1993 .
[19] R. Baxter,et al. New solvable lattice models in three dimensions , 1992 .
[20] V. Tarasov. CYCLIC MONODROMY MATRICES FOR THE R-MATRIX OF THE SIX-VERTEX MODEL AND THE CHIRAL POTTS MODEL WITH FIXED SPIN BOUNDARY CONDITIONS , 1992 .
[21] E. Sklyanin. Quantum Inverse Scattering Method. Selected Topics , 1992, hep-th/9211111.
[22] B. McCoy,et al. Excitation spectrum and phase structure of the chiral Potts model , 1990 .
[23] Evgeny Sklyanin. FUNCTIONAL BETHE ANSATZ , 1990 .
[24] V. Tarasov. Transfer matrix of the superintegrable chiral Potts model. Bethe ansatz spectrum , 1990 .
[25] R. Baxter. Chiral Potts model: Eigenvalues of the transfer matrix , 1990 .
[26] R. Baxter,et al. FUNCTIONAL RELATIONS FOR TRANSFER MATRICES OF THE CHIRAL POTTS MODEL , 1990 .
[27] Y. Stroganov,et al. Chiral Potts model as a descendant of the six-vertex model , 1990 .
[28] R. Baxter. Superintegrable chiral Potts model: Thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian , 1989 .
[29] N. Reshetikhin,et al. Critical Rsos Models and Conformal Field Theory , 1989 .
[30] B. McCoy,et al. Eigenvalue Spectrum of the Superintegrable Chiral Potts Model , 1989 .
[31] E. Sklyanin. The quantum Toda chain , 1987 .
[32] N. Reshetikhin,et al. Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum , 1987 .
[33] V. Korepin,et al. Quantum inverse scattering method , 1982 .
[34] Evgeny Sklyanin,et al. QUANTUM SPECTRAL TRANSFORM METHOD. RECENT DEVELOPMENTS , 1982 .
[35] M. Gutzwiller. The quantum mechanical Toda lattice, II , 1980 .
[36] Tobias J. Hagge,et al. Physics , 1929, Nature.