Searching the Future

In this paper we define a new retrieval problem: future retrieval. The idea is to use news information to obtain future possible events and then search events related to our current (or future) information needs. In another words, we include time as a formal attribute for a document. We present a simple ranking model based on time segments, a prototype for it and some specific examples. This work also poses new challenges for natural language processing, information extraction, and answer evaluation.

[1]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[2]  Searching for the future , 1990 .

[3]  Sushil Jajodia,et al.  Temporal Databases: Theory, Design, and Implementation , 1993 .

[4]  Ramakrishnan Srikant,et al.  Discovering Trends in Text Databases , 1997, KDD.

[5]  Jian Zhang,et al.  Daily Prediction of Major Stock Indices from Textual WWW Data , 1998, KDD.

[6]  Christian S. Jensen,et al.  Temporal Entity-RelationshipModels | a Survey , 1996 .

[7]  James Allan,et al.  Language models for financial news recommendation , 2000, CIKM '00.

[8]  Vasant Dhar,et al.  Intelligent information triage , 2001, SIGIR '01.

[9]  Robert Dale,et al.  Handbook of Natural Language Processing , 2001, Computational Linguistics.

[11]  James Allan,et al.  Topic detection and tracking: event-based information organization , 2002 .

[12]  Raymond K. Wong,et al.  Currency Exchange Rate Forecasting From News Headlines , 2002, Australasian Database Conference.

[13]  C. J. Date,et al.  Temporal data and the relational model , 2002 .

[14]  Frank Schilder,et al.  Temporal Information Extraction for Temporal Question Answering , 2003, New Directions in Question Answering.

[15]  Maria Teresa Pazienza Information Extraction in the Web Era , 2003, Lecture Notes in Computer Science.

[16]  Editors , 2003 .

[17]  Raymond J. Mooney,et al.  Text mining with information extraction , 2004 .

[18]  Ricardo A. Baeza-Yates,et al.  A Case Study: News Classification Based on Term Frequency , 2005, 16th International Workshop on Database and Expert Systems Applications (DEXA'05).

[19]  Frank Schilder,et al.  From Temporal Expressions To Temporal Information: Semantic Tagging Of News Messages , 2001, The Language of Time - A Reader.

[20]  David D. Jensen,et al.  Mining of Concurrent Text and Time Series , 2008 .

[21]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.