A pure bending exact nodal-averaged shear strain method for finite element plate analysis

[1]  Hui-Ping Wang,et al.  An enhanced cell‐based smoothed finite element method for the analysis of Reissner–Mindlin plate bending problems involving distorted mesh , 2013 .

[2]  Dongdong Wang,et al.  A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates , 2013 .

[3]  M. Koishi,et al.  Three‐dimensional meshfree‐enriched finite element formulation for micromechanical hyperelastic modeling of particulate rubber composites , 2012 .

[4]  Satoyuki Tanaka,et al.  NONLINEAR THIN-PLATE BENDING ANALYSES USING THE HERMITE REPRODUCING KERNEL APPROXIMATION , 2012 .

[5]  P. Krysl,et al.  Reformulation of nodally integrated continuum elements to attain insensitivity to distortion , 2012 .

[6]  Hung Nguyen-Xuan,et al.  Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing , 2012 .

[7]  Hsin-Yun Hu,et al.  Recent developments in stabilized Galerkin and collocation meshfree methods , 2011 .

[8]  G. Y. Li,et al.  NODAL INTEGRATION THIN PLATE FORMULATION USING LINEAR INTERPOLATION AND TRIANGULAR CELLS , 2011 .

[9]  C. T. Wu,et al.  Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids , 2011 .

[10]  Dongdong Wang,et al.  Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures , 2011 .

[11]  C. T. Wu,et al.  A generalized approximation for the meshfree analysis of solids , 2011 .

[12]  Dongdong Wang,et al.  Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration , 2010 .

[13]  G. R. Liu,et al.  On Smoothed Finite Element Methods , 2010 .

[14]  G. Liu A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems , 2010 .

[15]  Bishnu P. Lamichhane,et al.  From the Hu–Washizu formulation to the average nodal strain formulation , 2009 .

[16]  Petr Krysl,et al.  Displacement‐based finite elements with nodal integration for Reissner–Mindlin plates , 2009 .

[17]  R. Kouhia On stabilized finite element methods for the Reissner–Mindlin plate model , 2008 .

[18]  Michael A. Puso,et al.  Meshfree and finite element nodal integration methods , 2008 .

[19]  Dongdong Wang,et al.  A Hermite reproducing kernel approximation for thin‐plate analysis with sub‐domain stabilized conforming integration , 2008 .

[20]  Bishnu P. Lamichhane,et al.  Inf–sup stable finite-element pairs based on dual meshes and bases for nearly incompressible elasticity , 2008 .

[21]  H. Nguyen-Xuan,et al.  A smoothed finite element method for plate analysis , 2008 .

[22]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[23]  Michael A. Puso,et al.  A stabilized nodally integrated tetrahedral , 2006 .

[24]  E. A. de Souza Neto,et al.  An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains , 2004 .

[25]  Dongdong Wang,et al.  Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .

[26]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[27]  Renato Natal Jorge,et al.  Development of shear locking‐free shell elements using an enhanced assumed strain formulation , 2002 .

[28]  Eugenio Oñate,et al.  A finite point method for elasticity problems , 2001 .

[29]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[30]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[31]  E. Ramm,et al.  A unified approach for shear-locking-free triangular and rectangular shell finite elements , 2000 .

[32]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[33]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[34]  J. Bonet,et al.  A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .

[35]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[36]  Manil Suri,et al.  Analytical and computational assessment of locking in the hp finite element method , 1996 .

[37]  Rolf Stenberg,et al.  A stable bilinear element for the Reissner-Mindlin plate model , 1993 .

[38]  Chang-Koon Choi,et al.  Improvement of quadratic finite element for mindlin plate bending , 1992 .

[39]  M. Fortin,et al.  ERROR ANALYSIS OF MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES , 1991 .

[40]  K. Bathe,et al.  Mixed-interpolated elements for Reissner–Mindlin plates , 1989 .

[41]  O. C. Zienkiewicz,et al.  A robust triangular plate bending element of the Reissner–Mindlin type , 1988 .

[42]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[43]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[44]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[45]  R. M. Natal Jorge,et al.  A natural neighbour meshless method with a 3D shell-like approach in the dynamic analysis of thin 3D structures , 2011 .

[46]  M. Puso,et al.  Strain Smoothing for Stabilization and Regularization of Galerkin Meshfree Methods , 2007 .

[47]  Dong-dong Wang A Stabilized Conforming Integartion Procedure for Galerkin Meshfree Analysis of Thin Beam and Plate , 2006 .

[48]  Fuh-Gwo Yuan,et al.  A cubic triangular finite element for flat plates with shear , 1989 .