Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala

The amygdala has a pivotal role in deciphering the emotional significance of sensory stimuli enabling emotional memory formation. We have previously shown that prefrontal cortices in rhesus monkeys project to the amygdala mainly from their deep layers, suggesting feedback communication. If sensory areas convey signals pertinent to the state of the environment, they should issue feedforward projections to the amygdala, arising mainly from the upper layers, consistent with the flow of information from earlier- to later-processing sensory cortices. Here we addressed this hypothesis in cases with injection of tracers in sites of the amygdala known to have robust connections with prefrontal cortices and mapped connections in insular and temporal cortices associated with sensory processing and memory. The medial temporal pole, the entorhinal and perirhinal areas, and the agranular and dysgranular insula had the densest connections with the amygdala, and the lateral temporal pole, the parahippocampal region, and the granular insula had sparser connections. Most areas projected to the amygdala predominantly from the upper layers, suggesting feedforward communication, and received reciprocal amygdalar innervation primarily in their superficial layers, suggesting feedback communication. In contrast, the entorhinal cortex issued projections to the amygdala from its deep layers, suggesting feedback communication, and received reciprocal amygdalar projections most densely in layers II-III, which project to the hippocampus. These findings may help explain how the amygdala can attach emotional value to environmental stimuli, participate in the sequence of information processing of emotions, and modulate the formation of emotional memories.

[1]  D. Amaral,et al.  An autoradiographic study of the projections of the central nucleus of the monkey amygdala , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  Pascal Belin,et al.  Amygdala responses to nonlinguistic emotional vocalizations , 2007, NeuroImage.

[3]  D. Amaral,et al.  Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  J L McGaugh,et al.  Amygdala activity at encoding correlated with long-term, free recall of emotional information. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[5]  O. Steward,et al.  Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat , 1976, The Journal of comparative neurology.

[6]  J. Price,et al.  Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat , 1977, The Journal of comparative neurology.

[7]  Wendy A Suzuki,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization , 2003, The Journal of comparative neurology.

[8]  John P. Aggleton,et al.  The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. , 1992 .

[9]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[10]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[11]  H. J. G. Gundersen,et al.  The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[12]  James L. McGaugh,et al.  Mechanisms of emotional arousal and lasting declarative memory , 1998, Trends in Neurosciences.

[13]  M. Mesulam,et al.  Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum , 1982, The Journal of comparative neurology.

[14]  G. Rizzolatti,et al.  Both of Us Disgusted in My Insula The Common Neural Basis of Seeing and Feeling Disgust , 2003, Neuron.

[15]  J. Johnston Further contributions to the study of the evolution of the forebrain , 1923 .

[16]  K. Pribram,et al.  Neuronographic analysis of medial and basal cerebral cortex. II. Monkey. , 1953, Journal of neurophysiology.

[17]  H. Barbas Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices , 2000, Brain Research Bulletin.

[18]  L. Swanson,et al.  Organization of projections from the basomedial nucleus of the amygdala: A PHAL study in the rat , 1996, The Journal of comparative neurology.

[19]  D. Amaral,et al.  Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey , 2003, Neuroscience.

[20]  H. Barbas,et al.  Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey , 1990, The Journal of comparative neurology.

[21]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents , 1975, Brain Research.

[22]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[23]  M. Yukie,et al.  Amygdalar connections with middle and inferior temporal gyri of the monkey , 1987, Neuroscience Letters.

[24]  J. D. McGaugh The amygdala modulates the consolidation of memories of emotionally arousing experiences. , 2004, Annual review of neuroscience.

[25]  Ricardo Insausti,et al.  Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex , 2005, Experimental Brain Research.

[26]  O. Ottersen,et al.  Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase , 1982, The Journal of comparative neurology.

[27]  D. Amaral,et al.  Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study , 2000, The Journal of comparative neurology.

[28]  A M Galaburda,et al.  The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey , 1983, The Journal of comparative neurology.

[29]  D. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents , 1975, Brain Research.

[30]  M. Mesulam,et al.  Neural inputs into the temporopolar cortex of the rhesus monkey , 1987, The Journal of comparative neurology.

[31]  M. Yukie,et al.  Amygdalofugal and amygdalopetal connections with modality‐specific visual cortical areas in macaques (macaca fuscata, M. mulatta, and M. fascicularis) , 1987, The Journal of comparative neurology.

[32]  E. Jolkkonen,et al.  Anatomic heterogeneity of the rat amygdaloid complex. , 2000, Folia morphologica.

[33]  D. Pandya,et al.  Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[34]  Hideki Kondo,et al.  Differential connections of the temporal pole with the orbital and medial prefrontal networks in macaque monkeys , 2003, The Journal of comparative neurology.

[35]  H. Barbas,et al.  Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey , 1993, Neuroscience.

[36]  James L. McGaugh,et al.  Make mild moments memorable: add a little arousal , 2006, Trends in Cognitive Sciences.

[37]  D. Paré,et al.  Low-probability transmission of neocortical and entorhinal impulses through the perirhinal cortex. , 2004, Journal of neurophysiology.

[38]  D. Amaral,et al.  Where are the perirhinal and parahippocampal cortices? a historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe , 2003, Neuroscience.

[39]  H. Barbas,et al.  Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey. , 2005, Cerebral cortex.

[40]  Claus C. Hilgetag,et al.  Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex , 2006, PLoS Comput. Biol..

[41]  M. A. Siegel,et al.  Collateralization of the amygdaloid projections of the rat prelimbic and infralimbic cortices , 1989, The Journal of comparative neurology.

[42]  A. McDonald Cortical pathways to the mammalian amygdala , 1998, Progress in Neurobiology.

[43]  D. Amaral,et al.  Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey , 2002, Hippocampus.

[44]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  Larry Cahill,et al.  Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage , 2003, NeuroImage.

[46]  R. Cabeza,et al.  Interaction between the Amygdala and the Medial Temporal Lobe Memory System Predicts Better Memory for Emotional Events , 2004, Neuron.

[47]  H. Barbas,et al.  Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression , 2003, BMC Neuroscience.

[48]  D. Paré,et al.  The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus , 2004, Progress in Neurobiology.

[49]  I. Olson,et al.  The Enigmatic temporal pole: a review of findings on social and emotional processing. , 2007, Brain : a journal of neurology.

[50]  M. Mesulam,et al.  Cortical afferent input to the principals region of the rhesus monkey , 1985, Neuroscience.

[51]  M Mishkin,et al.  Long-term effects of selective neonatal temporal lobe lesions on learning and memory in monkeys. , 1995, Behavioral neuroscience.

[52]  M. Mesulam,et al.  Insula of the old world monkey. Architectonics in the insulo‐orbito‐temporal component of the paralimbic brain , 1982, The Journal of comparative neurology.

[53]  H. Eichenbaum A cortical–hippocampal system for declarative memory , 2000, Nature Reviews Neuroscience.

[54]  D. N. Pandya,et al.  Insular interconnections with the amygdala in the rhesus monkey , 1981, Neuroscience.

[55]  G. V. Hoesen,et al.  Temporal neocortical afferent connections to the amygdala in the rhesus monkey , 1976, Brain Research.

[56]  R. E. Passingham,et al.  Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta) , 1980, Brain Research.

[57]  Henning Scheich,et al.  Left Auditory Cortex and Amygdala, but Right Insula Dominance for Human Laughing and Crying , 2005, Journal of Cognitive Neuroscience.

[58]  Tsutomu Hashikawa,et al.  Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys , 2007, The Journal of comparative neurology.

[59]  T. Bussey,et al.  Perceptual–mnemonic functions of the perirhinal cortex , 1999, Trends in Cognitive Sciences.

[60]  M. Gershon,et al.  Evaluation of the activity of chemically identified enteric neurons through the histochemical demonstration of cytochrome oxidase , 1990, The Journal of comparative neurology.

[61]  P. Goldman-Rakic,et al.  Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys , 1981, The Journal of comparative neurology.

[62]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[63]  R. Adolphs,et al.  Impaired declarative memory for emotional material following bilateral amygdala damage in humans. , 1997, Learning & memory.

[64]  R. Adolphs Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala , 1997 .

[65]  D. Amaral,et al.  Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  V. Howard,et al.  Unbiased Stereology: Three-Dimensional Measurement in Microscopy , 1998 .

[67]  M. Mishkin,et al.  Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[69]  H. Spiers,et al.  Prefrontal and medial temporal lobe interactions in long-term memory , 2003, Nature Reviews Neuroscience.

[70]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[71]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[72]  D. Paré,et al.  Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions , 2006, Nature Neuroscience.

[73]  H. Barbas Flow of information for emotions through temporal and orbitofrontal pathways , 2007, Journal of anatomy.

[74]  E. Irle,et al.  Cortical and subcortical afferent connections of the primate's temporal pole: A study of rhesus monkeys, squirrel monkeys, and marmosets , 1985, The Journal of comparative neurology.

[75]  H. Barbas,et al.  Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey , 2002, Neuroscience.

[76]  M. Mishkin,et al.  Species-specific calls evoke asymmetric activity in the monkey's temporal poles , 2004, Nature.

[77]  W. Nauta,et al.  Neural associations of the frontal cortex. , 1972, Acta neurobiologiae experimentalis.

[78]  O MARBURG,et al.  The amygdaloid complex. , 1949, Confinia neurologica.

[79]  P. Rakic,et al.  Three‐dimensional counting: An accurate and direct method to estimate numbers of cells in sectioned material , 1988, The Journal of comparative neurology.

[80]  H. Barbas,et al.  The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. , 2000, Cerebral cortex.

[81]  H. Barbas,et al.  Medial Prefrontal Cortices Are Unified by Common Connections With Superior Temporal Cortices and Distinguished by Input From Memory‐Related Areas in the Rhesus Monkey , 1999, The Journal of comparative neurology.

[82]  D. Amaral,et al.  Topographical organization of the entorhinal projection to the dentate gyrus of the monkey , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  Konrad Sandau,et al.  Unbiased Stereology. Three‐Dimensional Measurement in Microscopy. , 1999 .

[84]  C. Saper,et al.  Convergence of autonomic and limbic connections in the insular cortex of the rat , 1982, The Journal of comparative neurology.

[85]  Claus C. Hilgetag,et al.  Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala , 2007, NeuroImage.

[86]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents , 1994, The Journal of comparative neurology.

[87]  D. Pandya,et al.  Cortico-cortical connections in the rhesus monkey. , 1969, Brain research.

[88]  J. Lenman,et al.  THE HUMAN NERVOUS SYSTEM , 1975 .

[89]  F. T. Russchen,et al.  Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques , 1982, The Journal of comparative neurology.

[90]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[91]  H. Barbas,et al.  Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex , 1995, Neuroscience & Biobehavioral Reviews.

[92]  D. Gaffan,et al.  Perirhinal Cortex Ablation Impairs Visual Object Identification , 1998, The Journal of Neuroscience.

[93]  A. Pitkänen,et al.  Projections from the lateral, basal and accessory basal nuclei of the amygdala to the perirhinal and postrhinal cortices in rat. , 2001, Cerebral cortex.

[94]  A. McDonald,et al.  Amygdaloid connections with posterior insular and temporal cortical areas in the rat , 1987, The Journal of comparative neurology.

[95]  M Mishkin,et al.  Organization of the amygdalopetal projections from modality‐specific cortical association areas in the monkey , 1980, The Journal of comparative neurology.

[96]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections , 1975, Brain Research.

[97]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[98]  A. Ylinen,et al.  Reciprocal Connections between the Amygdala and the Hippocampal Formation, Perirhinal Cortex, and Postrhinal Cortex in Rat: A Review , 2000, Annals of the New York Academy of Sciences.

[99]  Finn A. GENnS Distribution of Acetyl Cholinesterase in the Hippocampal Region of the Guinea Pig , 1972 .

[100]  C. Cavada,et al.  The anatomical connections of the macaque monkey orbitofrontal cortex. A review. , 2000, Cerebral cortex.

[101]  G. Paxinos,et al.  THE HUMAN NERVOUS SYSTEM , 1975 .

[102]  H. Gundersen,et al.  Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator , 1991, The Anatomical record.

[103]  D. Amaral,et al.  Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex , 1991, The Journal of comparative neurology.

[104]  D. Amaral,et al.  Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study , 2002, The Journal of comparative neurology.

[105]  David P. Friedman,et al.  Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch , 1986, The Journal of comparative neurology.

[106]  M. Mesulam,et al.  Insula of the old world monkey. III: Efferent cortical output and comments on function , 1982, The Journal of comparative neurology.

[107]  D. Perrett,et al.  A specific neural substrate for perceiving facial expressions of disgust , 1997, Nature.

[108]  John Patrick Aggleton,et al.  The Amygdala : a functional analysis , 2000 .

[109]  W. Nauta,et al.  Neural associations of the amygdaloid complex in the monkey. , 1962, Brain : a journal of neurology.

[110]  D. Zald The human amygdala and the emotional evaluation of sensory stimuli , 2003, Brain Research Reviews.

[111]  Joseph E LeDoux Emotion: clues from the brain. , 1995, Annual review of psychology.

[112]  Andrew L. Alexander,et al.  Contextual Modulation of Amygdala Responsivity to Surprised Faces , 2004, Journal of Cognitive Neuroscience.

[113]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[114]  E. C. Gower,et al.  Efferent projections from limbic cortex of the temporal pole to the magnocellular medial dorsal nucleus in the rhesus monkey , 1989, The Journal of comparative neurology.

[115]  John Apergis-Schoute,et al.  Interaction between amygdala and neocortical inputs in the perirhinal cortex. , 2005, Journal of neurophysiology.

[116]  Jordan Grafman,et al.  Handbook of Neuropsychology , 1991 .