Medical image segmentation based on non-parametric mixture models with spatial information

Because of too much dependence on prior assumptions, parametric estimation methods using finite mixture models are sensitive to noise in image segmentation. In this study, we developed a new medical image segmentation method based on non-parametric mixture models with spatial information. First, we designed the non-parametric image mixture models based on the cosine orthogonal sequence and defined the spatial information functions to obtain the spatial neighborhood information. Second, we calculated the orthogonal polynomial coefficients and the mixing ratio of the models using expectation-maximization (EM) algorithm, to classify the images by Bayesian Principle. This method can effectively overcome the problem of model mismatch, restrain noise, and keep the edge property well. In comparison with other methods, our method appears to have a better performance in the segmentation of simulated brain images and computed tomography (CT) images.

[1]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[2]  Faouzi Ghorbel,et al.  An unsupervised and non-parametric bayesian classifier , 2003, Pattern Recognit. Lett..

[3]  R. Kronmal,et al.  The Estimation of Probability Densities and Cumulatives by Fourier Series Methods , 1968 .

[4]  Dong Liu,et al.  Multi-resolution image segmentation based on Gaussian mixture model , 2006 .

[5]  Richard A. Redner,et al.  Nonparametric probability density estimation using normalized b–splines , 1992 .

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  Raquel Menezes,et al.  A Kernel Variogram Estimator for Clustered Data , 2008 .

[8]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[9]  Miao Qi,et al.  A Modified FCM Algorithm for MRI Brain Image Segmentation , 2008, 2008 International Seminar on Future BioMedical Information Engineering.

[10]  Geoffrey J. McLachlan,et al.  Robust mixture modelling using the t distribution , 2000, Stat. Comput..

[11]  Jack C. Lee,et al.  Robust mixture modeling using the skew t distribution , 2007, Stat. Comput..

[12]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[13]  Shu-Kai S. Fan,et al.  Image thresholding using a novel estimation method in generalized Gaussian distribution mixture modeling , 2008, Neurocomputing.

[14]  Ujjwal Maulik,et al.  Medical Image Segmentation Using Genetic Algorithms , 2009, IEEE Transactions on Information Technology in Biomedicine.

[15]  Tsung-I Lin,et al.  Finite mixture modelling using the skew normal distribution , 2007 .

[16]  Shehroz S. Khan,et al.  Cluster center initialization algorithm for K-means clustering , 2004, Pattern Recognit. Lett..

[17]  Lu Hu,et al.  A Possibility Fuzzy Clustering Algorithm Based on the Uncertainty Membership , 2008 .

[18]  Marc Stamminger,et al.  Spatialized Transfer Functions , 2005, EuroVis.

[19]  Liang Peng,et al.  On nonparametric local inference for density estimation , 2010, Comput. Stat. Data Anal..

[20]  Vladimir Katkovnik,et al.  Kernel density estimation with adaptive varying window size , 2002, Pattern Recognit. Lett..

[21]  Luciano Nieddu,et al.  Finite Mixture Models for Mapping Spatially Dependent Disease Counts , 2009, Biometrical journal. Biometrische Zeitschrift.

[22]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[23]  Michael Brady,et al.  Estimating the bias field of MR images , 1997, IEEE Transactions on Medical Imaging.

[24]  Yee-Hong Yang,et al.  Multiresolution Color Image Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.