Transient and steady-state amplitudes of forced waves in rectangular basins

A weakly-nonlinear analysis of the transient evolution of two-dimensional, standing waves in a rectangular basin is presented. The waves are resonated by periodic oscillation along an axis aligned with the wavenumber vector. The amplitude of oscillation is assumed to be small with respect to the basin dimensions. The effects of detuning, viscous damping, and cubic nonlinearity are all simultaneously considered. Moreover, the analysis is formulated in water of general depth. Multiple-scales analysis is used in order to derive an evolution equation for the complex amplitude of the resonated wave. From this equation, the maximum transient and steady-state amplitudes of the wave are determined. It is shown that steady-state analysis will underestimate the maximum response of a basin set into motion from rest. Amplitude response diagrams demonstrate good agreement with previous experimental investigations. The analysis is invalid in the vicinity of the “critical depth” and in the shallow-water limit. A separat...

[1]  Michael Faraday,et al.  XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces , 1831, Philosophical Transactions of the Royal Society of London.

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  C. K. Thornhill,et al.  Part II. finite periodic stationary gravity waves in a perfect liquid , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  Thomas Brooke Benjamin,et al.  The stability of the plane free surface of a liquid in vertical periodic motion , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  G. H. Keulegan,et al.  Energy dissipation in standing waves in rectangular basins , 1959, Journal of Fluid Mechanics.

[6]  Joseph B. Keller,et al.  Standing surface waves of finite amplitude , 1960, Journal of Fluid Mechanics.

[7]  D. Fultz,et al.  An experimental note on finite-amplitude standing gravity waves , 1962, Journal of Fluid Mechanics.

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  W. Chester,et al.  Resonant oscillations of water waves I. Theory , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  W. Chester,et al.  Resonant oscillations of water waves. II. Experiment , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  C. Mei,et al.  Harmonic Generation in Shallow Water Waves , 1972 .

[12]  H. Ockendon,et al.  Resonant surface waves , 1973, Journal of Fluid Mechanics.

[13]  J. L. Davies,et al.  Waves on Beaches and Resulting Sediment Transport , 1973 .

[14]  C. Mei,et al.  The damping of surface gravity waves in a bounded liquid , 1973, Journal of Fluid Mechanics.

[15]  J. Weiland,et al.  Repetitive Explosive Instabilities , 1973 .

[16]  O. M. Valtinsen A Nonlinear Theory of Sloshing in Rectangular Tanks , 1974 .

[17]  R. Davis,et al.  Excitation of edge waves by waves incident on a beach , 1974 .

[18]  J. Weiland,et al.  Coherent non-linear interaction of waves in plasmas , 1977 .

[19]  G. B. Whitham,et al.  On the excitation of edge waves on beaches , 1977, Journal of Fluid Mechanics.

[20]  N. Rockliff,et al.  Finite amplitude effects in free and forced edge waves , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[22]  Robert G. Dean,et al.  Water wave mechanics for engineers and scientists , 1983 .

[23]  C. Mei The applied dynamics of ocean surface waves , 1983 .

[24]  F. Raichlen,et al.  Nonlinear Oscillations in Rectangular Tanks , 1988 .

[25]  Diane M. Henderson,et al.  PARAMETRICALLY FORCED SURFACE WAVES , 1990 .

[26]  T. Akylas,et al.  FINITE-AMPLITUDE EDGE WAVES , 1990 .

[27]  J. Miles,et al.  Single-mode Faraday waves in small cylinders , 1990, Journal of Fluid Mechanics.

[28]  D. D. Waterhouse Resonant sloshing near a critical depth , 1994, Journal of Fluid Mechanics.

[29]  M. Foda,et al.  Resonant fluidization of silty soil by water waves , 1994 .

[30]  P. Umbanhowar,et al.  Localized excitations in a vertically vibrated granular layer , 1996, Nature.

[31]  Z. C. Feng Transition to Traveling Waves from Standing Waves in a Rectangular Container Subjected to Horizontal Excitations , 1997 .

[32]  Carlos Martel,et al.  Surface wave damping in a brimful circular cylinder , 1998, Journal of Fluid Mechanics.

[33]  D. Benielli,et al.  Excitation and breaking of internal gravity waves by parametric instability , 1998, Journal of Fluid Mechanics.

[34]  Satish Kumar Parametrically driven surface waves in viscoelastic liquids , 1999 .

[35]  Odd M. Faltinsen,et al.  Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth , 2000, Journal of Fluid Mechanics.

[36]  Valery N. Pilipchuk,et al.  Recent Advances in Liquid Sloshing Dynamics , 2001 .

[37]  D. Hill The Faraday resonance of interfacial waves in weakly viscous fluids , 2002 .

[38]  Odd M. Faltinsen,et al.  Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth , 2002, Journal of Fluid Mechanics.