Adaptive Trajectory Tracking Control of Wheeled Mobile Robots with Nonholonomic Constraint

A mobile robot is one of the well-known nonholonomic systems. In this paper, a new adaptive tracking controller for the kinematic model of a nonholonomic mobile robot with unknown parameters is proposed. Stability of the rule is proved through the use of a Liapunov function. The artificial electrostatic field cooperates with error posture in steering in the controller. At last, this method is implemented on the simulations and the wheeled mobile robot. Results show the effectiveness of the controllers.