Supervised tensor learning

Tensor representation is helpful to reduce the small sample size problem in discriminative subspace selection. As pointed by this paper, this is mainly because the structure information of objects in computer vision research is a reasonable constraint to reduce the number of unknown parameters used to represent a learning model. Therefore, we apply this information to the vector-based learning and generalize the vector-based learning to the tensor-based learning as the supervised tensor learning (STL) framework, which accepts tensors as input. To obtain the solution of STL, the alternating projection optimization procedure is developed. The STL framework is a combination of the convex optimization and the operations in multilinear algebra. The tensor representation helps reduce the overfitting problem in vector-based learning. Based on STL and its alternating projection optimization procedure, we generalize support vector machines, minimax probability machine, Fisher discriminant analysis, and distance metric learning, to support tensor machines, tensor minimax probability machine, tensor Fisher discriminant analysis, and the multiple distance metrics learning, respectively. We also study the iterative procedure for feature extraction within STL. To examine the effectiveness of STL, we implement the tensor minimax probability machine for image classification. By comparing with minimax probability machine, the tensor version reduces the overfitting problem.

[1]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[2]  I. Olkin,et al.  Multivariate Chebyshev Inequalities , 1960 .

[3]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[4]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[5]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[6]  Wayne L. Winston,et al.  Introduction to mathematical programming , 1991 .

[7]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[8]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[9]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[10]  Bernhard Schölkopf,et al.  Semiparametric Support Vector and Linear Programming Machines , 1998, NIPS.

[11]  John Shawe-Taylor,et al.  Generalization Performance of Support Vector Machines and Other Pattern Classifiers , 1999 .

[12]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[13]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[14]  Anil K. Jain,et al.  On image classification: city images vs. landscapes , 1998, Pattern Recognit..

[15]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[16]  Andreas Girgensohn,et al.  Video classification using transform coefficients , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[17]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[18]  Antonio Torralba,et al.  Semantic organization of scenes using discriminant structural templates , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Noboru Murata,et al.  Support Vector Machines for Linear Programming: Motivation and Formulations , 1999 .

[20]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[22]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[23]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[24]  Amnon Shashua,et al.  Linear image coding for regression and classification using the tensor-rank principle , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[25]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[26]  Glenn Fung,et al.  Proximal support vector machine classifiers , 2001, KDD '01.

[27]  Michael I. Jordan,et al.  A Robust Minimax Approach to Classification , 2003, J. Mach. Learn. Res..

[28]  Shih-Fu Chang,et al.  The holy grail of content-based media analysis , 2002 .

[29]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[30]  Robert B. Fisher,et al.  Object-based visual attention for computer vision , 2003, Artif. Intell..

[31]  Gregory Z. Grudic,et al.  Sparse Greedy Minimax Probability Machine Classification , 2003, NIPS.

[32]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[33]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[35]  Heikki Mannila,et al.  Using Markov chain Monte Carlo and dynamic programming for event sequence data , 2005, Knowledge and Information Systems.

[36]  Jieping Ye,et al.  Two-Dimensional Linear Discriminant Analysis , 2004, NIPS.

[37]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[38]  Tao Li,et al.  Semisupervised learning from different information sources , 2005, Knowledge and Information Systems.

[39]  Kanad K. Biswas,et al.  Region-based image retrieval using integrated color, shape, and location index , 2004, Comput. Vis. Image Underst..

[40]  Jieping Ye,et al.  A two-stage linear discriminant analysis via QR-decomposition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[42]  Stephen P. Boyd,et al.  Robust Fisher Discriminant Analysis , 2005, NIPS.

[43]  Harry Shum,et al.  Concurrent subspaces analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[44]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[45]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Massih-Reza Amini,et al.  Semi-supervised learning with an imperfect supervisor , 2005, Knowledge and Information Systems.

[47]  Xuelong Li,et al.  Supervised Tensor Learning , 2005, ICDM.

[48]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[49]  Xuelong Li,et al.  Human Carrying Status in Visual Surveillance , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[50]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[51]  Xuelong Li,et al.  Elapsed Time in Human Gait Recognition: A New Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[52]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[53]  Stephen P. Boyd,et al.  A tutorial on geometric programming , 2007, Optimization and Engineering.

[54]  Xuelong Li,et al.  Negative Samples Analysis in Relevance Feedback , 2007, IEEE Transactions on Knowledge and Data Engineering.

[55]  Dacheng Tao,et al.  Discriminative linear and multilinear subspace methods , 2007 .