Ranking Vectors by Means of the Dominance Degree Matrix

In multi-/many-objective evolutionary algorithms (MOEAs), there are varieties of vector ranking schemes, including nondominated sorting, dominance counting, and so on. Usually, these vector ranking schemes in the classical MOEAs are of high computational complexity. Thus, in recent years, many researchers put emphasis on the further improvement of the computational complexity of the vector ranking schemes. In this paper, we propose the dominance degree matrix for a set of vectors and design a fast method to construct this new data structure, which requires <inline-formula> <tex-math notation="LaTeX">${O}$ </tex-math></inline-formula>(<italic>mN</italic>log <inline-formula> <tex-math notation="LaTeX">${N}$ </tex-math></inline-formula>) comparisons on average. The dominance degree matrix is constructed based on the properties of Pareto domination, and it can convert the dominance comparison into counting the number of special element pairs. Based on the dominance degree matrix, we develop a new and efficient implementation of nondominated sorting called dominance degree approach for nondominated sorting (DDA-NS), which has an average time complexity of <inline-formula> <tex-math notation="LaTeX">${O}$ </tex-math></inline-formula>(<italic>mN</italic><inline-formula> <tex-math notation="LaTeX">$^{2}$ </tex-math></inline-formula>) but only requires <inline-formula> <tex-math notation="LaTeX">${O}$ </tex-math></inline-formula>(<italic>mN</italic>log <inline-formula> <tex-math notation="LaTeX">${N}$ </tex-math></inline-formula>) objective function value comparisons on average. Empirical results demonstrate that DDA-NS clearly outperforms six other representative approaches for nondominated sorting in most cases and DDA-NS performs well when dealing with large-size and many-objective populations. In addition, we also use the dominance degree matrix to form a new method for calculating the dominance strength for Strength Pareto Evolutionary Algorithm (SPEA)2, which greatly improves the efficiency of the naive calculation method in SPEA2. Experiments on benchmark problems show that the Nondominated Sorting Genetic Algorithm (NSGA)-II and NSGA-III framework embedding DDA-NS and the SPEA2 framework embedding the new method of calculating the dominance strength indeed achieve the improvement of the runtime.

[1]  Jun Du,et al.  A Sorting Based Algorithm for Finding a Non-dominated Set in Multi-objective Optimization , 2007, Third International Conference on Natural Computation (ICNC 2007).

[2]  Jiong Shen,et al.  An Immune Recognition Based Algorithm for Finding Non-Dominated Set in Multi-Objective Optimization , 2008, 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application.

[3]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[4]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[5]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[6]  Jon Louis Bentley,et al.  Multidimensional divide-and-conquer , 1980, CACM.

[7]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[8]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[9]  Kiyoshi Tanaka,et al.  Ieee Transactions on Evolutionary Computation Computational Cost Reduction of Non-dominated Sorting Using the M-front , 2022 .

[10]  Kent McClymont,et al.  Deductive Sort and Climbing Sort: New Methods for Non-Dominated Sorting , 2012, Evolutionary Computation.

[11]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[12]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[14]  Kay Chen Tan,et al.  A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design , 2010, Eur. J. Oper. Res..

[15]  Tapabrata Ray,et al.  Six-Sigma Robust Design Optimization Using a Many-Objective Decomposition-Based Evolutionary Algorithm , 2015, IEEE Transactions on Evolutionary Computation.

[16]  Jinhua Zheng,et al.  A New Method to Construct the Non-Dominated Set in Multi-Objective Genetic Algorithms , 2004, Intelligent Information Processing.

[17]  Oliver Schütze,et al.  A New Data Structure for the Nondominance Problem in Multi-objective Optimization , 2003, EMO.

[18]  Christian Fonteix,et al.  Multicriteria optimization using a genetic algorithm for determining a Pareto set , 1996, Int. J. Syst. Sci..

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[21]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[22]  Wenhua Zeng,et al.  Reducing the run-time complexity of NSGA-II for bi-objective optimization problem , 2010, 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[23]  Shengxiang Yang,et al.  A Grid-Based Evolutionary Algorithm for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[24]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[25]  K. Chandra Sekaran,et al.  Improved NSGA-II Based on a Novel Ranking Scheme , 2010, ArXiv.

[26]  Hussein A. Abbass,et al.  The Pareto Differential Evolution Algorithm , 2002, Int. J. Artif. Intell. Tools.

[27]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[28]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[29]  Marc Parizeau,et al.  Generalizing the improved run-time complexity algorithm for non-dominated sorting , 2013, GECCO '13.

[30]  Ye Tian,et al.  A Knee Point-Driven Evolutionary Algorithm for Many-Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[31]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[32]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[33]  Ye Tian,et al.  An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[34]  Richard F. Hartl,et al.  Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection , 2006, Eur. J. Oper. Res..

[35]  Gexiang Zhang,et al.  A many-objective evolutionary algorithm based on directional diversity and favorable convergence , 2014, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[36]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[37]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[38]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[39]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[40]  Qian Wang,et al.  An Efficient Non-dominated Sorting Method for Evolutionary Algorithms , 2008, Evolutionary Computation.

[41]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[42]  Daniel Angus,et al.  Crowding Population-based Ant Colony Optimisation for the Multi-objective Travelling Salesman Problem , 2007, 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making.

[43]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[44]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[45]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[46]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[47]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[48]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[49]  Alfred O. Hero,et al.  A PDE-based Approach to Nondominated Sorting , 2013, SIAM J. Numer. Anal..

[50]  Pratyusha Rakshit,et al.  Multi-Robot Box-Pushing Using Non-dominated Sorting Bee Colony Optimization Algorithm , 2011, SEMCCO.

[51]  Tapabrata Ray,et al.  A steady state decomposition based quantum genetic algorithm for many objective optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[52]  Zhongzhi Shi,et al.  A Fast Nondominated Sorting Algorithm , 2005, 2005 International Conference on Neural Networks and Brain.

[53]  Gaurav Verma,et al.  A Novel Non-dominated Sorting Algorithm , 2011, SEMCCO.

[54]  Zixing Cai,et al.  A Fast Method of Constructing the Non-dominated Set: Arena's Principle , 2008, 2008 Fourth International Conference on Natural Computation.

[55]  Qingfu Zhang,et al.  An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition , 2015, IEEE Transactions on Evolutionary Computation.

[56]  Lishan Kang,et al.  A fast algorithm on finding the non-dominated set in multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[57]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[58]  T. Simpson,et al.  Algorithms to identify pareto points in multi-dimensional data sets , 2004 .

[59]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[60]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[61]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[62]  Bin Wu,et al.  An Efficient Fitness Assignment Based on Dominating Tree , 2007 .

[63]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[64]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach , 2014, IEEE Transactions on Evolutionary Computation.

[65]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[66]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[67]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[68]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[69]  Jing Xiao,et al.  A new many-objective evolutionary algorithm based on self-adaptive differential evolution , 2013, 2013 Ninth International Conference on Natural Computation (ICNC).

[70]  Christoph F. Eick,et al.  On Regional Association Rule Scoping , 2007 .

[71]  Tapabrata Ray,et al.  A Decomposition-Based Evolutionary Algorithm for Many Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[72]  Xin Yao,et al.  A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.