Enhanced cancer therapy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles.

[1]  K. Kathiresan,et al.  Antioxidant, Anti-Lung Cancer, and Anti-Bacterial Activities of Toxicodendron vernicifluum , 2019, Biomolecules.

[2]  A. Mehmood,et al.  Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: uptake by cells and organs , 2018, International journal of nanomedicine.

[3]  R. Zhuo,et al.  Aptamer-functionalized albumin-based nanoparticles for targeted drug delivery. , 2018, Colloids and surfaces. B, Biointerfaces.

[4]  Yu Xia,et al.  Delivery of Doxorubicin for Human Cervical Carcinoma Targeting Therapy by Folic Acid-Modified Selenium Nanoparticles , 2018, International journal of molecular sciences.

[5]  B. Mukherjee,et al.  Aptamer-Conjugated Apigenin Nanoparticles To Target Colorectal Carcinoma: A Promising Safe Alternative of Colorectal Cancer Chemotherapy , 2018, ACS Applied Bio Materials.

[6]  Yu Xia,et al.  Functionalized selenium nanoparticles for targeted delivery of doxorubicin to improve non-small-cell lung cancer therapy , 2018, International journal of nanomedicine.

[7]  K. Kathiresan,et al.  Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. , 2018, Journal of photochemistry and photobiology. B, Biology.

[8]  Solmaz Maleki Dizaj,et al.  Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles , 2018, Journal of drug targeting.

[9]  Joseph D. McMillan,et al.  Transmission Electron Microscopy for Analysis of Mitochondria in Mouse Skeletal Muscle. , 2018, Bio-protocol.

[10]  Yen Wei,et al.  PEGylated chitosan nanoparticles with embedded bismuth sulfide for dual-wavelength fluorescent imaging and photothermal therapy. , 2018, Carbohydrate polymers.

[11]  Zhengwei Cai,et al.  Paclitaxel-loaded PLGA microspheres with a novel morphology to facilitate drug delivery and antitumor efficiency , 2018, RSC advances.

[12]  A. Letai,et al.  BCL-XL directly modulates RAS signalling to favour cancer cell stemness , 2017, Nature Communications.

[13]  Longgang Wang,et al.  Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. , 2017, Nanomedicine : nanotechnology, biology, and medicine.

[14]  E. Morales-Ávila,et al.  Biodegradable poly(D,L-lactide-co-glycolide)/poly(L-γ-glutamic acid) nanoparticles conjugated to folic acid for targeted delivery of doxorubicin. , 2017, Materials science & engineering. C, Materials for biological applications.

[15]  M. Gorshkova,et al.  Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. , 2017, International journal of pharmaceutics.

[16]  P. Høilund-Carlsen,et al.  Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411 , 2017, PloS one.

[17]  S. Siddharth,et al.  Chitosan-Dextran sulfate coated doxorubicin loaded PLGA-PVA-nanoparticles caused apoptosis in doxorubicin resistance breast cancer cells through induction of DNA damage , 2017, Scientific Reports.

[18]  P. Bates,et al.  G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. , 2017, Biochimica et biophysica acta. General subjects.

[19]  M. Ramezani,et al.  In vitro and in vivo evaluation of anti‐nucleolin‐targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[20]  T. Webster,et al.  Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications , 2017, International journal of nanomedicine.

[21]  M. Ramezani,et al.  Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. , 2017, Materials science & engineering. C, Materials for biological applications.

[22]  G. Guo,et al.  Enhancing the anti-glioma therapy of doxorubicin by honokiol with biodegradable self-assembling micelles through multiple evaluations , 2017, Scientific Reports.

[23]  M. Patil,et al.  Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study. , 2016, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[24]  K. O'Byrne,et al.  Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo , 2016, BMC Cancer.

[25]  S. M. Taghdisi,et al.  Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[26]  Yitao Wang,et al.  Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[27]  C. Rejeeth,et al.  HER2 Targeted Breast Cancer Therapy with Switchable "Off/On" Multifunctional "Smart" Magnetic Polymer Core-Shell Nanocomposites. , 2016, ACS applied materials & interfaces.

[28]  T. Park,et al.  Inhibition of apoptosis in HeLa cell by silkworm storage protein 1, SP1 , 2015, Biotechnology and Bioprocess Engineering.

[29]  K. Kathiresan,et al.  Anticancer potential of bioactive 16-methylheptadecanoic acid methyl ester derived from marine Trichoderma , 2015 .

[30]  C. Richardson,et al.  Aptamer-Functionalized Nanoparticles as “Smart Bombs”: The Unrealized Potential for Personalized Medicine and Targeted Cancer Treatment , 2015, Targeted Oncology.

[31]  Zhenzhong Zhang,et al.  Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles , 2015, Journal of drug targeting.

[32]  A. Ashkenazi Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions. , 2015, The Journal of clinical investigation.

[33]  T. Mai,et al.  Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles , 2015 .

[34]  C. Sharma,et al.  Supramolecular hydroxyapatite complexes as theranostic near-infrared luminescent drug carriers , 2014 .

[35]  Yazhou Wang,et al.  Polymer-controlled core–shell nanoparticles: a novel strategy for sequential drug release , 2014 .

[36]  B. Mukherjee,et al.  Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy , 2014, International journal of nanomedicine.

[37]  E. Papadimitriou,et al.  Cell surface nucleolin as a target for anti-cancer therapies. , 2014, Recent patents on anti-cancer drug discovery.

[38]  Soundarapandian Kannan,et al.  Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. , 2014, ACS applied materials & interfaces.

[39]  Weihong Tan,et al.  Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy , 2014, NPG Asia materials.

[40]  W. Xu,et al.  PEG-PLGA Nanoparticles Entrapping Doxorubicin Reduced Doxorubicin-Induced Cardiotoxicity in Rats , 2014 .

[41]  Liyu Li,et al.  Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. , 2014, Biomaterials.

[42]  Liang Xu,et al.  Enhanced activity of doxorubicin in drug resistant A549 tumor cells by encapsulation of P-glycoprotein inhibitor in PLGA-based nanovectors , 2013, Oncology letters.

[43]  Patrick Couvreur,et al.  Stimuli-responsive nanocarriers for drug delivery. , 2013, Nature materials.

[44]  R. Thangam,et al.  pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. , 2013, Colloids and surfaces. B, Biointerfaces.

[45]  Philippe Juin,et al.  Decoding and unlocking the BCL-2 dependency of cancer cells , 2013, Nature Reviews Cancer.

[46]  S. Laurent,et al.  Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. , 2013, International journal of pharmaceutics.

[47]  J. Briand,et al.  Nucleolin mediates the antiangiogenesis effect of the pseudopeptide N6L , 2012, BMC Cell Biology.

[48]  D. Bernhard,et al.  Apoptosis and necrosis: two different outcomes of cigarette smoke condensate-induced endothelial cell death , 2012, Cell Death and Disease.

[49]  A. Aravind,et al.  Aptamer-conjugated polymeric nanoparticles for targeted cancer therapy , 2012, Drug Delivery and Translational Research.

[50]  Wei Wang,et al.  Whole-cell SELEX aptamer-functionalised poly(ethyleneglycol)-poly(ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. , 2012, Biomaterials.

[51]  J. Vishwanatha,et al.  Combinatorial nanoparticles for cancer diagnosis and therapy. , 2012, Current medicinal chemistry.

[52]  Xin-guo Jiang,et al.  Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. , 2012, Biomaterials.

[53]  Xin-guo Jiang,et al.  Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. , 2011, Biomaterials.

[54]  W Cai,et al.  Tumor-targeted drug delivery with aptamers. , 2011, Current medicinal chemistry.

[55]  Xianghui Xu,et al.  Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[56]  M. Glatzel,et al.  Efficient Chemotherapy of Rat Glioblastoma Using Doxorubicin-Loaded PLGA Nanoparticles with Different Stabilizers , 2011, PloS one.

[57]  B. Clary,et al.  Aptamer applications for targeted cancer therapy. , 2010, Future oncology.

[58]  Tatsuro Watanabe,et al.  Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. , 2010, Biological & pharmaceutical bulletin.

[59]  R. Ramanujan,et al.  Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery , 2010 .

[60]  J. Kreuter,et al.  Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[61]  M. Stevanović,et al.  Preparation and Characterization of Poly(D,L-Lactide-co-Glycolide) Nanoparticles Containing Ascorbic Acid , 2007, Journal of biomedicine & biotechnology.

[62]  I. Chourpa,et al.  Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[63]  D. Šuput,et al.  Overexpression of caspase-9 triggers its activation and apoptosis in vitro. , 2006, Croatian medical journal.

[64]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  B. Cookson,et al.  Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells , 2005, Infection and Immunity.

[66]  T. Kissel,et al.  Biodegradable comb polyesters containing polyelectrolyte backbones facilitate the preparation of nanoparticles with defined surface structure and bioadhesive properties , 2002 .

[67]  B. Mignotte,et al.  Mitochondrial reactive oxygen species in cell death signaling. , 2002, Biochimie.

[68]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[69]  H. Ruan,et al.  BAD Ser-155 Phosphorylation Regulates BAD/Bcl-XL Interaction and Cell Survival* , 2000, The Journal of Biological Chemistry.

[70]  M. V. Vander Heiden,et al.  Bcl-xL Prevents the Initial Decrease in Mitochondrial Membrane Potential and Subsequent Reactive Oxygen Species Production during Tumor Necrosis Factor Alpha-Induced Apoptosis , 2000, Molecular and Cellular Biology.

[71]  Y. Rustum,et al.  Overexpression of Bax enhances antitumor activity of chemotherapeutic agents in human head and neck squamous cell carcinoma. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[72]  E. Mathiowitz,et al.  Controlled delivery of therapeutics from microporous membranes. II. In vitro degradation and release of heparin-loaded poly(D,L-lactide-co-glycolide). , 1997, Biomaterials.

[73]  L. Gerweck,et al.  Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. , 1996, Cancer research.

[74]  D. Bredesen,et al.  Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. , 1993, Science.

[75]  J. Haveman,et al.  The relevance of tumour pH to the treatment of malignant disease. , 1984, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[76]  K. Kathiresan,et al.  Novel metabolites from Trichoderma atroviride against human prostate cancer cells and their inhibitory effect on Helicobacter pylori and Shigella toxin producing Escherichia coli. , 2019, Microbial pathogenesis.

[77]  K. Kathiresan,et al.  Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. , 2019, Journal of photochemistry and photobiology. B, Biology.

[78]  Vladimir P Torchilin,et al.  pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. , 2013, Biomaterials.

[79]  L. Rajendran,et al.  Subcellular targeting strategies for drug design and delivery , 2010, Nature Reviews Drug Discovery.