Visually mining relational data

Mining relational data often boils down to computing clusters, that is finding sub-communities of data elements forming cohesive sub-units, while being well separated from one another. The clusters themselves are sometimes termed "communities" and the way clusters relate to one another is often referred to as a "community structure". Methods for identifying communities or subgroups in network data is the focus of intense research is different scientific communities and for different purposes. The present paper focuses on two novel algorithms producing multilevel community structures from raw network data. The two algorithms exploit an edge metric extending Watts's clustering coefficient to edges of a graph. The full benefit of the method comes from the multilevel nature of the community structure as it facilitates the visual interaction and navigation of the network by zooming in and out of components at any level. This multilevel navigation proves to be useful when visually exploring a network in search for structural patterns.

[1]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Ivan Herman,et al.  Graph Visualisation and Navigation in Information Visualisation , 1999, Eurographics.

[4]  Jarke J. van Wijk,et al.  The value of visualization , 2005, VIS 05. IEEE Visualization, 2005..

[5]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[6]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[7]  Emden R. Gansner,et al.  Using automatic clustering to produce high-level system organizations of source code , 1998, Proceedings. 6th International Workshop on Program Comprehension. IWPC'98 (Cat. No.98TB100242).

[8]  Martin Suter,et al.  Small World , 2002 .

[9]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[11]  Ben Shneiderman,et al.  Structural analysis of hypertexts: identifying hierarchies and useful metrics , 1992, TOIS.

[12]  Guy Melançon,et al.  Multiscale visualization of small world networks , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[13]  Ivan Herman,et al.  Tree Visualisation and Navigation Clues for Information Visualisation , 1998, Comput. Graph. Forum.

[14]  Sudipto Guha,et al.  ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[15]  Maylis Delest,et al.  Strahler based graph clustering using convolution , 2004, Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004..

[16]  Xiaodi Huang,et al.  A Framework of Filtering, Clustering and Dynamic Layout Graphs for Visualization , 2005, ACSC.

[17]  Christos Faloutsos,et al.  Graph mining: Laws, generators, and algorithms , 2006, CSUR.

[18]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[19]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[20]  Charu C. Aggarwal,et al.  On the use of Human-Computer Interaction for Projected Nearest Neighbor Search , 2006, Data Mining and Knowledge Discovery.

[21]  Ken Brodlie,et al.  Gaining understanding of multivariate and multidimensional data through visualization , 2004, Comput. Graph..

[22]  John M. Barnard,et al.  Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..

[23]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[24]  Ed H. Chi,et al.  A taxonomy of visualization techniques using the data state reference model , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[25]  Jacalyn M. Huband,et al.  bigVAT: Visual assessment of cluster tendency for large data sets , 2005, Pattern Recognit..

[26]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[27]  Emden R. Gansner,et al.  Bunch: a clustering tool for the recovery and maintenance of software system structures , 1999, Proceedings IEEE International Conference on Software Maintenance - 1999 (ICSM'99). 'Software Maintenance for Business Change' (Cat. No.99CB36360).

[28]  David Auber,et al.  Tulip - A Huge Graph Visualization Framework , 2004, Graph Drawing Software.

[29]  Tyson R. Henry,et al.  Interactive graph layout: the exploration of large graphs , 1992 .

[30]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[32]  Jarke J. van Wijk,et al.  Interactive Visualization of Small World Graphs , 2004, IEEE Symposium on Information Visualization.

[33]  Guy Melançon,et al.  Software components capture using graph clustering , 2003, 11th IEEE International Workshop on Program Comprehension, 2003..

[34]  Andrew B. Kahng,et al.  Recent developments in netlist partitioning: a survey , 1995 .

[35]  Jean-Philippe Domenger,et al.  Skeletal Images as Visual Cues in Graph Visualization , 1999, VisSym.

[36]  G. Melançon,et al.  Réseaux Multi-Niveaux : L'Exemple des Echanges Aériens Mondiaux de Passagers , 2005 .

[37]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Goldberg,et al.  Assessing experimentally derived interactions in a small world , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[40]  John Scott Social Network Analysis , 1988 .

[41]  Michael Kaufmann,et al.  Drawing graphs: methods and models , 2001 .

[42]  B. Bollobás The evolution of random graphs , 1984 .

[43]  Guy Melançon,et al.  A Quality Measure for Multi-Level Community Structure , 2006, 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[44]  P. Erdos,et al.  On the evolution of random graphs , 1984 .