A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications

Abstract A novel waveguide consisting of oligo-porous core photonic crystal fiber (PCF) with a kagome lattice cladding has been designed for highly birefringent and near zero dispersion flattened applications of terahertz waves. The wave guiding properties of the designed PCF including birefringence, dispersion, effective material loss (EML), core power fraction, confinement loss, and modal effective area are investigated using a full vector Finite Element Method (FEM) with Perfectly Matched Layer (PML) absorbing boundary condition. Simulation results demonstrate that an ultra-high birefringence of 0.079, low EML of 0.05 cm−1, higher core power fraction of 44% and negligible confinement loss of 7 . 24 × 1 0 − 7  cm−1 can be achieved at 1 THz. Furthermore, for the y-polarization mode a near zero flattened dispersion of 0 . 49 ± 0 . 05  ps/THz/cm is achieved within a broad frequency range of 0.8–1.7 THz. The fabrication of the proposed fiber is feasible using the existing fabrication technology. Due to favorable wave-guiding properties, the proposed fiber has potential for terahertz imaging, sensing and polarization maintaining applications in the terahertz frequency range.

[1]  Sohel Rana,et al.  A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime , 2016, IEEE Photonics Technology Letters.

[2]  S. M. Abdur Razzak,et al.  Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. , 2016, Applied optics.

[3]  Michael Nagel,et al.  Integrated THz technology for label-free genetic diagnostics , 2002 .

[4]  Mohammad Faisal,et al.  Porous core photonic crystal fibre for ultra-low material loss in THz regime , 2016, IET Commun..

[5]  Derek Abbott,et al.  Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy. , 2009, Applied optics.

[6]  Alexander Argyros,et al.  Characterization of a microstructured Zeonex terahertz fiber , 2011 .

[7]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[8]  Felicity Cox,et al.  Fabrication and study of microstructured optical fibers with elliptical holes. , 2004, Optics letters.

[9]  Christos Markos,et al.  Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing , 2017 .

[10]  Qiang Xu,et al.  Fabrication and Characteristics of Elliptical-Holes and near Elliptical Core Hexangular Lattice Photonic Crystal Fibers Based on Polymer , 2011 .

[11]  O. Bang,et al.  Design and optimization of mechanically down-doped terahertz fiber directional couplers. , 2014, Optics express.

[12]  Christos Markos,et al.  High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. , 2013, Optics express.

[13]  Daru Chen,et al.  Highly Birefringent Terahertz Fibers Based on Super-Cell Structure , 2010, Journal of Lightwave Technology.

[14]  P. Taday,et al.  Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. , 2005, Journal of pharmaceutical sciences.

[15]  Derek Abbott,et al.  Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission , 2017 .

[16]  Tanya M Monro,et al.  Extrusion of complex preforms for microstructured optical fibers. , 2007, Optics express.

[17]  Derek Abbott,et al.  A Novel Approach for Spectroscopic Chemical Identification Using Photonic Crystal Fiber in the Terahertz Regime , 2018, IEEE Sensors Journal.

[18]  Md. Shamim Anower,et al.  Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance , 2017 .

[19]  Shengjiang Chang,et al.  Terahertz polarization splitter based on orthogonal microstructure dual-core photonic crystal fiber. , 2013, Applied optics.

[20]  Michael Nagel,et al.  Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission , 2007 .

[21]  P. Roberts,et al.  Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. , 2011, Optics letters.

[22]  E. Linfield,et al.  Terahertz Pulsed Imaging of Skin Cancer in the Time and Frequency Domain , 2003, Journal of biological physics.

[23]  D. Webb,et al.  Humidity insensitive TOPAS polymer fiber Bragg grating sensor. , 2011, Optics express.

[24]  H. Kurz,et al.  Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires. , 2005, Optics express.

[25]  Derek Abbott,et al.  THz porous fibers: design, fabrication and experimental characterization. , 2009, Optics express.

[26]  Jin Huang,et al.  Design of Highly Birefringent and Low-Loss Oligoporous-Core THz Photonic Crystal Fiber With Single Circular Air-Hole Unit , 2016, IEEE Photonics Journal.

[27]  Haolin Tian,et al.  3D printed low-loss THz waveguide based on Kagome photonic crystal structure. , 2016, Optics express.

[28]  Derek Abbott,et al.  T-Ray Sensing and Imaging , 2003, Proceedings of the IEEE.

[29]  Wai Lam Chan,et al.  A spatial light modulator for terahertz beams , 2009 .

[30]  D. Grischkowsky,et al.  Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. , 1999, Optics letters.

[31]  Jiangquan Zhang,et al.  Waveguide terahertz time-domain spectroscopy of nanometer water layers. , 2004, Optics letters.

[32]  Kawsar Ahmed,et al.  Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. , 2017, Applied optics.

[33]  Gottfried Strasser,et al.  Terahertz phase modulator , 2000 .

[34]  Derek Abbott,et al.  Low loss, low dispersion and highly birefringent terahertz porous fibers , 2008, 0807.4354.

[35]  Derek Abbott,et al.  Special Issue on T-Ray Imaging, Sensing, and Retection , 2007, Proceedings of the IEEE.

[36]  D. Grischkowsky,et al.  Undistorted guided-wave propagation of subpicosecond terahertz pulses. , 2001, Optics letters.

[37]  S. Afshar,et al.  Light confinement within nanoholes in nanostructured optical fibers. , 2010, Optics express.

[38]  Y. Namihira,et al.  Light source design using Kagome-lattice hollow core photonic crystal fibers , 2014 .

[39]  Derek Abbott,et al.  Ultra low-loss hybrid core porous fiber for broadband applications. , 2017, Applied optics.

[40]  Yoshinori Namihira,et al.  Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance , 2015, Journal of Lightwave Technology.

[41]  Md. Anwar Sadath,et al.  Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance. , 2016, Optics letters.

[42]  Raonaqul Islam,et al.  Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime , 2015, IEEE Photonics Technology Letters.

[43]  Ivan D. Nikolov,et al.  Dispersion Properties of Optical Polymers , 2009 .

[44]  Saiful Islam,et al.  Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime , 2016 .

[45]  Xiaodong Jiang,et al.  Low-loss polarization-maintaining THz photonic crystal fiber with a triple-hole core. , 2017, Applied optics.