From Positive to Negative Zero-Field Splitting in a Series of Strongly Magnetically Anisotropic Mononuclear Metal Complexes.

A series of mononuclear [M(hfa)2(pic)2] (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; pic = 4-methylpyridine; M = FeII, CoII, NiII, ZnII) compounds were obtained and characterized. The structures of the complexes have been resolved by single-crystal X-ray diffraction, indicating that, apart from the zinc derivative, the complexes are in a trans configuration. Moreover, a dramatic lenghthening of the Fe-N distances was observed, whereas the nickel(II) complex is almost perfectly octahedral. The magnetic anisotropy of these complexes was thoroughly studied by direct-current (dc) magnetic measurements, high-field electron paramagnetic resonance, and infrared (IR) magnetospectroscopy: the iron(II) derivative exhibits an out-of-plane anisotropy (DFe = -7.28 cm-1) with a high rhombicity, whereas the cobalt(II) and nickel(II) complexes show in-plane anisotropy (DCo ∼ 92-95 cm-1; DNi = 4.920 cm-1). Ab initio calculations were performed to rationalize the evolution of the structure and identify the excited states governing the magnetic anisotropy along the series. For the iron(II) complex, an out-of-phase alternating-current (ac) magnetic susceptibility signal was observed using a 0.1 T dc field. For the cobalt(II) derivative, the ac magnetic susceptibility shows the presence of two field-dependent relaxation phenomena: at low field (500 Oe), the relaxation process is beyond single-ion behavior, whereas at high field (2000 Oe), the relaxation of magnetization implies several mechanisms including an Orbach process with Ueff = 25 K and quantum tunneling of magnetization. The observation by μ-SQUID magnetization measurements of hysteresis loops of up to 1 K confirmed the single-ion-magnet behavior of the cobalt(II) derivative.

[1]  Elena A. Buvaylo,et al.  Field-Assisted Slow Magnetic Relaxation in a Six-Coordinate Co(II)-Co(III) Complex with Large Negative Anisotropy. , 2017, Inorganic chemistry.

[2]  R. Boča,et al.  Field-Supported Single-Molecule Magnets of Type [Co(bzimpy)X2]: Field-Supported Single-Molecule Magnets of Type [Co(bzimpy)X2] , 2017 .

[3]  N. Guihéry,et al.  Magnetic Anisotropy in Pentacoordinate NiII and CoII Complexes: Unraveling Electronic and Geometrical Contributions. , 2017, Chemistry.

[4]  Frank Neese,et al.  Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2- Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations. , 2017, Inorganic chemistry.

[5]  S. Aldoshin,et al.  Single-Ion Magnet Et4N[CoII(hfac)3] with Nonuniaxial Anisotropy: Synthesis, Experimental Characterization, and Theoretical Modeling. , 2016, Inorganic chemistry.

[6]  Silvia Gómez-Coca,et al.  Trigonal antiprismatic Co(ii) single molecule magnets with large uniaxial anisotropies: importance of Raman and tunneling mechanisms , 2016, Chemical science.

[7]  F. Neese,et al.  A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier , 2016, Nature Communications.

[8]  M. Murugesu,et al.  The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules? , 2015, Chemical science.

[9]  A. Pavlov,et al.  A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule Magnet Behavior. , 2015, Journal of the American Chemical Society.

[10]  Frank Neese,et al.  First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets , 2015 .

[11]  G. Rajaraman,et al.  Magnetic anisotropy of mononuclear Ni(II) complexes: on the importance of structural diversity and the structural distortions. , 2014, Chemistry.

[12]  R. Boča,et al.  Single-molecule magnetism in a pentacoordinate cobalt(II) complex supported by an antenna ligand. , 2014, Inorganic chemistry.

[13]  W. Wernsdorfer,et al.  Ising-type magnetic anisotropy and single molecule magnet behaviour in mononuclear trigonal bipyramidal Co(II) complexes , 2014 .

[14]  E. Cremades,et al.  Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy , 2014, Nature Communications.

[15]  R. Boča,et al.  Simple mononuclear cobalt(II) complex: a single-molecule magnet showing two slow relaxation processes. , 2014, Inorganic chemistry.

[16]  W. Wernsdorfer,et al.  Slow magnetic relaxation in a Co(II)-Y(III) single-ion magnet with positive axial zero-field splitting. , 2013, Angewandte Chemie.

[17]  Frank Neese,et al.  Magnetic blocking in a linear iron(I) complex. , 2013, Nature chemistry.

[18]  E. Cremades,et al.  Mononuclear single-molecule magnets: tailoring the magnetic anisotropy of first-row transition-metal complexes. , 2013, Journal of the American Chemical Society.

[19]  Joseph M. Zadrozny,et al.  Slow magnetization dynamics in a series of two-coordinate iron(II) complexes , 2013 .

[20]  N. Guihéry,et al.  Giant Ising-type magnetic anisotropy in trigonal bipyramidal Ni(II) complexes: experiment and theory. , 2013, Journal of the American Chemical Society.

[21]  C. de Graaf,et al.  Origin of the magnetic anisotropy in heptacoordinate Ni(II) and Co(II) complexes. , 2013, Chemistry.

[22]  F. Neese,et al.  A theoretical study of zero-field splitting in Fe(IV)S6 (S = 1) and Fe(III)S6 (S = 1/2) core complexes, [FeIV(Et2dtc)3−n(mnt)n](n−1)− and [FeIII(Et2dtc)3−n(mnt)n]n− (n = 0, 1, 2, 3): The origin of the magnetic anisotropy , 2013 .

[23]  Frank Neese,et al.  A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior , 2013 .

[24]  F. Neese,et al.  Zero-field splitting in a series of structurally related mononuclear Ni(II)-bispidine complexes. , 2012, Inorganic chemistry.

[25]  W. Wernsdorfer,et al.  Field-induced slow magnetic relaxation in a six-coordinate mononuclear cobalt(II) complex with a positive anisotropy. , 2012, Journal of the American Chemical Society.

[26]  R. Boča,et al.  Structural, spectral and magnetic properties of carboxylato cobalt(II) complexes with heterocyclic N-donor ligands: Reconstruction of magnetic parameters from electronic spectra , 2012 .

[27]  J. Long,et al.  Slow magnetic relaxation induced by a large transverse zero-field splitting in a Mn(II)Re(IV)(CN)2 single-chain magnet. , 2012, Journal of the American Chemical Society.

[28]  Christopher J. Chang,et al.  Slow magnetic relaxation in a pseudotetrahedral cobalt(II) complex with easy-plane anisotropy. , 2012, Chemical communications.

[29]  J. Platts,et al.  Fluorine-fluorine interactions in the solid state: an experimental and theoretical study. , 2012, The journal of physical chemistry. A.

[30]  Frank Neese,et al.  The ORCA program system , 2012 .

[31]  Joseph M. Zadrozny,et al.  Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2-. , 2011, Journal of the American Chemical Society.

[32]  R. Boča,et al.  Magnetostructural D correlations in hexacoordinated cobalt(II) complexes. , 2011, Inorganic chemistry.

[33]  Jinkui Tang,et al.  Relaxation dynamics of dysprosium(III) single molecule magnets. , 2011, Dalton transactions.

[34]  W. Wernsdorfer,et al.  Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. , 2011, Journal of the American Chemical Society.

[35]  R. Boča,et al.  Self-assembled cobalt(II) Schiff base complex: synthesis, structure, and magnetic properties , 2011 .

[36]  D. Pantazis,et al.  What is not required to make a single molecule magnet. , 2011, Faraday discussions.

[37]  Ruiping Deng,et al.  Two-step relaxation in a linear tetranuclear dysprosium(III) aggregate showing single-molecule magnet behavior. , 2010, Journal of the American Chemical Society.

[38]  R. Boča,et al.  Magnetostructural D correlation in nickel(II) complexes: reinvestigation of the zero-field splitting. , 2010, Inorganic chemistry.

[39]  Rosario Scopelliti,et al.  Isomerization mechanisms of stereolabile tris- and bis-bidentate octahedral cobalt(II) complexes: X-ray structure and variable temperature and pressure NMR kinetic investigations. , 2010, Inorganic chemistry.

[40]  Christopher J. Chang,et al.  Slow magnetic relaxation in a high-spin iron(II) complex. , 2010, Journal of the American Chemical Society.

[41]  R. Boča,et al.  Magneto-structural relationships for a mononuclear Co(II) complex with large zero-field splitting , 2010 .

[42]  N. Guihéry,et al.  Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians. , 2009, Journal of chemical theory and computation.

[43]  A. Powell,et al.  Strategies towards single molecule magnets based on lanthanide ions , 2009 .

[44]  M. Dressel,et al.  Polyoxometalates: Fascinating structures, unique magnetic properties , 2009 .

[45]  A. Powell,et al.  2,6-Bis(hydroxymethyl)phenols for the synthesis of high-nuclearity clusters , 2009 .

[46]  W. Wernsdorfer,et al.  From micro- to nano-SQUIDs: applications to nanomagnetism , 2009 .

[47]  Song Gao,et al.  3d-4f combined chemistry: synthetic strategies and magnetic properties. , 2009, Inorganic chemistry.

[48]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[49]  G. Christou,et al.  The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. , 2009, Chemical Society reviews.

[50]  W. Wernsdorfer,et al.  Covalently linked dimers of clusters: loop- and dumbbell-shaped Mn24 and Mn26 single-molecule magnets. , 2008, Angewandte Chemie.

[51]  A. Barra,et al.  Large magnetic anisotropy in pentacoordinate Ni(II) complexes. , 2008, Chemistry.

[52]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[53]  O. Waldmann A criterion for the anisotropy barrier in single-molecule magnets. , 2007, Inorganic chemistry.

[54]  L. Gorini,et al.  The origin of transverse anisotropy in axially symmetric single molecule magnets. , 2007, Journal of the American Chemical Society.

[55]  W. Wernsdorfer,et al.  "Spin tweaking" of a high-spin molecule: an Mn25 single-molecule magnet with an S=61/2 ground state. , 2007, Angewandte Chemie.

[56]  W. Wernsdorfer,et al.  High-nuclearity, high-symmetry, high-spin molecules: A mixed-valence Mn10 cage possessing rare T symmetry and an S = 22 ground state. , 2006, Angewandte Chemie.

[57]  A. Barra,et al.  Broad-band quasi-optical HF-EPR spectroscopy: Application to the study of the ferrous iron center from a rubredoxin mutant , 2006 .

[58]  Celestino Angeli,et al.  Third-order multireference perturbation theory: the n-electron valence state perturbation-theory approach. , 2006, The Journal of chemical physics.

[59]  G. Aromí,et al.  Synthesis of 3d metallic single-molecule magnets , 2006 .

[60]  W. Wernsdorfer,et al.  Linking centered manganese triangles into larger clusters: a {Mn32} truncated cube. , 2005, Angewandte Chemie.

[61]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[62]  D. Vicic,et al.  Bis[hydro­tris(4-chloro-3,5-dimethyl­pyrazolyl)borato]nickel(II) , 2005 .

[63]  Haitao Zhang,et al.  Heterometallic Bismuth-Transition Metal Homoleptic β-Diketonates , 2005 .

[64]  W. Wernsdorfer,et al.  New structural motifs in manganese single-molecule magnetism from the use of triethanolamine ligands. , 2005, Angewandte Chemie.

[65]  A. Ozarowski,et al.  High-frequency and -field EPR of a pseudo-octahedral complex of high-spin Fe(II): bis(2,2'-bi-2-thiazoline)bis(isothiocyanato)iron(II). , 2004, Journal of the American Chemical Society.

[66]  A. Neels,et al.  Spectroscopic and structural characterization of the [Fe(imidazole)(6)](2+) cation. , 2003, Inorganic chemistry.

[67]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[68]  R. Cimiraglia,et al.  n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants , 2002 .

[69]  W. Wernsdorfer,et al.  Quantum tunneling of magnetization in a new [Mn18]2+ single-molecule magnet with s = 13. , 2002, Journal of the American Chemical Society.

[70]  G. Christou,et al.  Single-Molecule Magnets: A New Family of Mn12 Clusters of Formula [Mn12O8X4(O2CPh)8L6] , 2002 .

[71]  J. Long,et al.  Nickel(II)-molybdenum(III)-cyanide clusters: synthesis and magnetic behavior of species incorporating [(Me(3)tacn)Mo(CN)(3)]. , 2002, Journal of the American Chemical Society.

[72]  Celestino Angeli,et al.  N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant , 2001 .

[73]  M. Pink,et al.  Single-Molecule Magnets: Ligand-Induced Core Distortion and Multiple Jahn−Teller Isomerism in [Mn12O12(O2CMe)8(O2PPh2)8(H2O)4] , 2001, cond-mat/0109533.

[74]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[75]  W. Wernsdorfer Classical and Quantum Magnetization Reversal Studied in Nanometer-Sized Particles and Clusters , 2001, cond-mat/0101104.

[76]  G. Christou,et al.  High-Spin Molecules: Hexanuclear MnIII Clusters with [Mn6O4X4]6+ (X = Cl-, Br-) Face-Capped Octahedral Cores and S = 12 Ground States , 1999 .

[77]  H. Weihe,et al.  Magnetic Susceptibility and EPR Spectra of (&mgr;-Hydroxo)bis[pentaamminechromium(III)] Chloride Monohydrate. , 1997, Inorganic chemistry.

[78]  D. Gatteschi Molecular Magnetism: A basis for new materials , 1994 .

[79]  A. Caneschi,et al.  Large Clusters of Metal Ions: The Transition from Molecular to Bulk Magnets , 1994, Science.

[80]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[81]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[82]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[83]  Dekker,et al.  Activated dynamics in a two-dimensional Ising spin glass: Rb2Cu1-xCoxF4. , 1989, Physical review. B, Condensed matter.

[84]  J. W. Whittaker,et al.  Spectroscopic studies on ferrous nonheme iron active sites: magnetic circular dichroism of mononuclear iron sites in superoxide dismutase and lipoxygenase , 1988 .

[85]  F. Izumi,et al.  Adducts of Bis(hexafluoroacetylacetonato)metal(II) with Uni-and Bidentate Nitrogenous Bases , 1975 .

[86]  J. D. Cloizeaux Extension d'une formule de Lagrange à des problèmes de valeurs propres , 1960 .

[87]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[88]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .