Alkalinity responses to climate warming destabilise the Earth’s thermostat

[1]  D. Richards,et al.  Exploring exogenous controls on short- versus long-term erosion rates globally , 2022, Earth Surface Dynamics.

[2]  P. Ciais,et al.  Monitoring global carbon emissions in 2021 , 2022, Nature Reviews Earth & Environment.

[3]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[4]  N. Hovius,et al.  Co-variation of silicate, carbonate and sulfide weathering drives CO2 release with erosion , 2021, Nature Geoscience.

[5]  S. Hagemann,et al.  HydroPy (v1.0): A new global hydrology model written in Python , 2021, Geoscientific Model Development.

[6]  V. Picotti,et al.  Controls on Physical and Chemical Denudation in a Mixed Carbonate‐Siliciclastic Orogen , 2021, Journal of Geophysical Research: Earth Surface.

[7]  D. Tikhomirov,et al.  Relating the spatial variability of chemical weathering and erosion to geological and topographical zones , 2020, Geomorphology.

[8]  J. Hartmann,et al.  A model for evaluating continental chemical weathering from riverine transports of dissolved major elements at a global scale , 2020 .

[9]  Brian T. Maurer Regression. , 2020, JAAPA : official journal of the American Academy of Physician Assistants.

[10]  S. Levick,et al.  Quantifying erosional equilibrium across a slowly eroding, soil mantled landscape , 2020, Earth Surface Processes and Landforms.

[11]  Mark Mulligan,et al.  GOODD, a global dataset of more than 38,000 georeferenced dams , 2020, Scientific Data.

[12]  B. Bond‐Lamberty,et al.  Spatial Predictions and Associated Uncertainty of Annual Soil Respiration at the Global Scale , 2019, Global Biogeochemical Cycles.

[13]  J. Hartmann,et al.  Global climate control on carbonate weathering intensity , 2019, Chemical Geology.

[14]  J. Hartmann,et al.  Temperature and CO2 dependency of global carbonate weathering fluxes – Implications for future carbonate weathering research , 2019, Chemical Geology.

[15]  S. Mudd,et al.  OCTOPUS: an open cosmogenic isotope and luminescence database , 2018, Earth System Science Data.

[16]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[17]  T. Hengl,et al.  Mapping the global depth to bedrock for land surface modeling , 2017 .

[18]  S. Feakins,et al.  The acid and alkalinity budgets of weathering in the Andes–Amazon system: Insights into the erosional control of global biogeochemical cycles , 2016 .

[19]  V. Vanacker,et al.  Kinetically limited weathering at low denudation rates in semiarid climatic conditions , 2016 .

[20]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[21]  L. François,et al.  Sensitivity of carbonate weathering to soil CO2 production by biological activity along a temperate climate transect , 2014 .

[22]  W. Dietrich,et al.  River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply , 2013 .

[23]  B. McElroy,et al.  Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales , 2013 .

[24]  Jens Hartmann,et al.  The new global lithological map database GLiM: A representation of rock properties at the Earth surface , 2012 .

[25]  Olivier Arino,et al.  Global Land Cover Map for 2009 (GlobCover 2009) , 2012 .

[26]  F. Blanckenburg,et al.  Soils as pacemakers and limiters of global silicate weathering , 2012 .

[27]  T. Papakyriakou,et al.  Export of Pacific carbon through the Arctic Archipelago to the North Atlantic , 2011 .

[28]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[29]  Jill A. Marshall,et al.  Evidence for biotic controls on topography and soil production , 2010 .

[30]  Ben Bond-Lamberty,et al.  Temperature-associated increases in the global soil respiration record , 2010, Nature.

[31]  J. Hartmann,et al.  Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? , 2009 .

[32]  J. Hartmann Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago - Application of a multi-lithological model framework , 2009 .

[33]  J. Blair,et al.  Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA , 2008 .

[34]  Congqiang Liu,et al.  Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: Examples from Southwest China , 2008 .

[35]  C. France‐Lanord,et al.  Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives , 2007 .

[36]  S. Gíslason,et al.  Direct Evidence of the Feedback Between Climate and Weathering in Glaciated River Catchments , 2007 .

[37]  F. Blanckenburg The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment , 2005 .

[38]  D. Hicks,et al.  Chemical weathering in high‐sediment‐yielding watersheds, New Zealand , 2005 .

[39]  A. West,et al.  Tectonic and climatic controls on silicate weathering , 2004 .

[40]  R. Zeebe,et al.  A simple model for the CaCO3 saturation state of the ocean: The “Strangelove,” the “Neritan,” and the “Cretan” Ocean , 2003 .

[41]  A. Jacobson,et al.  Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps , 2003 .

[42]  J. McKean,et al.  Soil transport driven by biological processes over millennial time scales , 2002 .

[43]  Wolfgang Grabs,et al.  High‐resolution fields of global runoff combining observed river discharge and simulated water balances , 2002 .

[44]  B. Dupré,et al.  The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield , 2002 .

[45]  J. G. King,et al.  Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales , 2001 .

[46]  William E. Dietrich,et al.  Stochastic processes of soil production and transport: erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range , 2001 .

[47]  W. Dietrich,et al.  The soil production function and landscape equilibrium , 1997, Nature.

[48]  Jean-Luc Probst,et al.  A global model for present‐day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM‐CO2) , 1995 .

[49]  J. Probst,et al.  Modelling of atmospheric CO2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins , 1993 .

[50]  R. Stallard,et al.  Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs , 1987 .

[51]  R. Garrels,et al.  The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years , 1983 .

[52]  Frank J. Millero,et al.  The Thermodynamics of the Carbonate System in Seawater , 1979 .

[53]  J. Hartmann,et al.  A Brief Overview of the GLObal RIver Chemistry Database, GLORICH , 2014 .

[54]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[55]  A. Jacobson,et al.  Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps , 2003 .

[56]  R. Stallard Tectonic, Environmental, and Human Aspects of Weathering and Erosion: A Global Review from a Steady-State Perspective , 1995 .

[57]  W. Dreybrodt Processes in Karst Systems , 1988 .

[58]  A. J. Moss,et al.  Movement of loose, sandy detritus by shallow water flows: An experimental study , 1980 .