Design of a Wideband Millimeter Wave Micromachined Rotman Lens

Design, fabrication, and performance of a micromachined millimeter wave Rotman lens are presented. To achieve wide instantaneous bandwidth with ±30° scan range, five different transmission lines with carefully designed transitions are monolithically integrated within the same process. Theoretical bandwidth of over 70 GHz is verified with a narrower bandwidth W-band measurements of VSWR (<;2.75:1), and 65-115 GHz measurements of realized gain (5-11 dBi), 3 dB beamwidth (20°-40°), and beam-peak locations in E-plane. Demonstrated results indicate that wideband Rotman lenses can now be engineered for emerging millimeter and submillimeter wave applications.

[1]  Yuri Tikhov,et al.  Compact broadband transition from double-ridge waveguide to coaxial line for phased array feed , 2002, 2002 9th International Symposium on Antenna Technology and Applied Electromagnetics [ANTEM].

[2]  Jangsoo Lee,et al.  Development of a V-band rotman lens using thin-film dielectric , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[3]  Y. Yoon,et al.  Beamforming Lens Antenna on a High Resistivity Silicon Wafer for 60 GHz WPAN , 2010, IEEE Transactions on Antennas and Propagation.

[4]  M.J. Maybell,et al.  Rotman lens development history at Raytheon Electronic Warfare Systems 1967-1995 , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[5]  Craig A. Grimes,et al.  Time-domain measurement of antenna Q , 2000 .

[6]  A. I. Zaghloul,et al.  Extremely high-frequency beam steerable lens-fed antenna for vehicular sensor applications , 2010 .

[7]  D. Kajfez,et al.  Invariant Definitions of the Unloaded Q Factor (Short Paper) , 1986 .

[9]  Roger F. Harrington,et al.  Control of radar scattering by reactive loading , 1972 .

[10]  W. Rotman,et al.  Wide-angle microwave lens for line source applications , 1963 .

[11]  Zhenhai Shao,et al.  W-band high bit passive phase shifter for automotive radar applications in BiCMOS , 2011, 2011 International Conference on Computational Problem-Solving (ICCP).

[12]  L. C. Stange,et al.  Fully integrated automotive radar sensor with versatile resolution , 2001, IMS 2001.

[13]  Randal Hugh Direen,et al.  Fundamental Limitations on the Terminal Behavior of Antennas and Nonuniform Transmission Lines , 2010 .

[14]  Wen Geyi,et al.  The Foster reactance theorem for antennas and radiation Q , 2000 .

[15]  P. Knott Design of a ridged waveguide feed network for a wideband Rotman lens antenna array , 2008, 2008 IEEE Radar Conference.

[16]  Donald R. Rhodes,et al.  Observable stored energies of electromagnetic systems , 1976 .

[17]  Andrew F. Peterson,et al.  Electronically scanned millimeter wave antenna using a Rotman lens , 1997 .

[18]  S. Best,et al.  Impedance, bandwidth, and Q of antennas , 2005 .

[19]  Nathan Joseph Jastram Passive front-ends for wideband millimeter wave electronic warfare , 2014 .

[20]  S.R. Best,et al.  Limitations in Relating Quality Factor to Bandwidth in a Double Resonance Small Antenna , 2007, IEEE Antennas and Wireless Propagation Letters.

[21]  Z. Popovic,et al.  Modeling, Design, Fabrication, and Performance of Rectangular μ-Coaxial Lines and Components , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[22]  D. Rhodes,et al.  A reactance theorem , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[24]  Jae Jin Lee,et al.  60GHz Rotman lens and new compact low loss delay line using LTCC technology , 2009, 2009 IEEE Radio and Wireless Symposium.

[25]  D. Filipović,et al.  Wideband multibeam millimeter wave arrays , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[27]  D. Parker,et al.  Phased arrays-part II: implementations, applications, and future trends , 2002 .

[28]  R. Pendleton,et al.  Broadband coax-waveguide transitions , 1995, Proceedings Particle Accelerator Conference.

[29]  P. Stepanenko,et al.  Wideband transition from coaxial to double ridged waveguide , 2005, 2005 5th International Conference on Antenna Theory and Techniques.

[30]  G. Ponchak,et al.  A 60-GHz Active Receiving Switched-Beam Antenna Array With Integrated Butler Matrix and GaAs Amplifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.