Chaospy: An open source tool for designing methods of uncertainty quantification

Abstract The paper describes the philosophy, design, functionality, and usage of the Python software toolbox Chaospy for performing uncertainty quantification via polynomial chaos expansions and Monte Carlo simulation. The paper compares Chaospy to similar packages and demonstrates a stronger focus on defining reusable software building blocks that can easily be assembled to construct new, tailored algorithms for uncertainty quantification. For example, a Chaospy user can in a few lines of high-level computer code define custom distributions, polynomials, integration rules, sampling schemes, and statistical metrics for uncertainty analysis. In addition, the software introduces some novel methodological advances, like a framework for computing Rosenblatt transformations and a new approach for creating polynomial chaos expansions with dependent stochastic variables.

[1]  Friedrich Schmid,et al.  A goodness of fit test for copulas based on Rosenblatt's transformation , 2007, Comput. Stat. Data Anal..

[2]  T. Stieltjes,et al.  Quelques recherches sur la théorie des quadratures dites mécaniques , 1884 .

[3]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[4]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[5]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[6]  A. Genz,et al.  Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , 1996 .

[7]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[8]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[9]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[10]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[11]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[12]  R. Tempone,et al.  Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .

[13]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[14]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[15]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[16]  R. Tibshirani,et al.  On the “degrees of freedom” of the lasso , 2007, 0712.0881.

[17]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[18]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[19]  Erik De Schutter,et al.  Complex Parameter Landscape for a Complex Neuron Model , 2006, PLoS Comput. Biol..

[20]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[21]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[22]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[23]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[24]  Wes McKinney,et al.  Python for Data Analysis , 2012 .

[25]  Harald Kunstmann,et al.  Impact of climate change on agricultural productivity under rainfed conditions in Cameroon—A method to improve attainable crop yields by planting date adaptations , 2010 .

[26]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[27]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[28]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[29]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[30]  David P. Wipf,et al.  A New View of Automatic Relevance Determination , 2007, NIPS.

[31]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[32]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[33]  C. Haselgrove,et al.  A method for numerical integration , 1961 .

[34]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[35]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[36]  R. Ghanem,et al.  Polynomial chaos decomposition for the simulation of non-gaussian nonstationary stochastic processes , 2002 .

[37]  R. Rifkin,et al.  Notes on Regularized Least Squares , 2007 .

[38]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[39]  B. Turlach Discussion of "Least Angle Regression" by Efron, Hastie, Johnstone and Tibshirani , 2004 .

[40]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[41]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[42]  Silvio Galanti,et al.  Low-Discrepancy Sequences , 1997 .

[43]  Akil C. Narayan,et al.  Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..

[44]  M. Bertran Note on Orthogonal Polynomials in v-Variables , 1975 .

[45]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[46]  R. Nelsen An Introduction to Copulas , 1998 .

[47]  W. Gautschi Construction of Gauss-Christoffel quadrature formulas , 1968 .

[48]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[49]  Michael S. Eldred,et al.  DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Reference Manual , 2001 .

[50]  Alan J. Lee,et al.  Generating Random Binary Deviates Having Fixed Marginal Distributions and Specified Degrees of Association , 1993 .

[51]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[52]  S. Isukapalli UNCERTAINTY ANALYSIS OF TRANSPORT-TRANSFORMATION MODELS , 1999 .

[53]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[54]  Beryl Rawson,et al.  Degrees of Freedom , 2010 .

[55]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[56]  R. Tibshirani,et al.  Forward stagewise regression and the monotone lasso , 2007, 0705.0269.