Continuum limits of random matrices and the Brownian carousel

We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine β, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane.The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2.

[1]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[2]  Brian D. Sutton,et al.  The stochastic operator approach to random matrix theory , 2005 .

[3]  R. Killip,et al.  Eigenvalue statistics for CMV matrices: From Poisson to clock via random matrix ensembles , 2009 .

[4]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[5]  H. Trotter Eigenvalue distributions of large Hermitian matrices; Wigner's semi-circle law and a theorem of Kac, Murdock, and Szegö , 1984 .

[6]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[7]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[8]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[9]  H. Widom The Asymptotics of a Continuous Analogue of Orthogonal Polynomials , 1994 .

[10]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[11]  E. Hille Note on a Power Series Considered By Hardy and Littlewood , 1929 .

[12]  Alexander Its,et al.  A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .

[13]  A. Edelman,et al.  From Random Matrices to Stochastic Operators , 2006, math-ph/0607038.

[14]  J. Ramírez,et al.  Beta ensembles, stochastic Airy spectrum, and a diffusion , 2006, math/0607331.

[15]  P. Forrester Log-Gases and Random Matrices , 2010 .

[16]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[17]  R. Killip Gaussian Fluctuations for β Ensembles , 2010 .

[18]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[19]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[20]  Eigenvalue Statistics for CMV Matrices: From Poisson to Clock via Circular Beta Ensembles , 2006, math-ph/0608002.