Clinical efficacy of optical coherence tomography to predict the visual outcome after endoscopic endonasal surgery for suprasellar tumors.

[1]  Huy Q. Truong,et al.  Surgical anatomy of the superior hypophyseal artery and its relevance for endoscopic endonasal surgery. , 2019, Journal of neurosurgery.

[2]  T. Hedges,et al.  Chiasmal damage shown by optical coherence tomography: case illustration. , 2019, Journal of neurosurgery.

[3]  H. Seol,et al.  Selection of endoscopic or transcranial surgery for tuberculum sellae meningiomas according to specific anatomical features: a retrospective multicenter analysis (KOSEN-002). , 2019, Journal of neurosurgery.

[4]  Sang Woo Park,et al.  Factors Influencing Visual Field Recovery after Transsphenoidal Resection of a Pituitary Adenoma , 2018, Korean journal of ophthalmology : KJO.

[5]  N. Newman,et al.  Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression , 2018, Pituitary.

[6]  H. Seol,et al.  Is Low-Lying Optic Chiasm an Obstacle to an Endoscopic Endonasal Approach for Retrochiasmatic Craniopharyngiomas? (Korean Society of Endoscopic Neurosurgery -003). , 2018, World neurosurgery.

[7]  I. Florian,et al.  Optical coherence tomography impacts the evaluation of visual pathway tumors , 2018, Neurosurgical Review.

[8]  L. Riffaud,et al.  Edema of the optic tract in patients with tumors of the sellar region: clinical and visual implications in the pediatric population. , 2018, Journal of neurosurgery. Pediatrics.

[9]  R. Mekary,et al.  Visual outcomes after endoscopic endonasal pituitary adenoma resection: a systematic review and meta-analysis , 2017, Pituitary.

[10]  Min Sun,et al.  Quantitative analysis of retinal layers on three-dimensional spectral-domain optical coherence tomography for pituitary adenoma , 2017, PloS one.

[11]  M. El-Dairi,et al.  Emerging Applications of Optical Coherence Tomography in Pediatric Optic Neuropathies. , 2017, Seminars in pediatric neurology.

[12]  T. Schwartz,et al.  Endoscopic Endonasal Versus Microscopic Transsphenoidal Surgery for Recurrent and/or Residual Pituitary Adenomas. , 2017, World neurosurgery.

[13]  A. Cohen-Gadol,et al.  Outcomes in transcranial microsurgery versus extended endoscopic endonasal approach for primary resection of adult craniopharyngiomas. , 2016, Neurosurgical focus.

[14]  Y. Nishida,et al.  Optical Coherence Tomography Angiography of Retinal Perfusion in Chiasmal Compression. , 2016, Ophthalmic surgery, lasers & imaging retina.

[15]  E. Kim,et al.  Predictive model for recovery of visual field after surgery of pituitary adenoma , 2016, Journal of Neuro-Oncology.

[16]  D. Kong,et al.  Endoscopic Modified Transseptal Transsphenoidal Approach for Maximal Preservation of Sinonasal Quality of Life and Olfaction. , 2016, World neurosurgery.

[17]  David W Roberts,et al.  Optical technologies for intraoperative neurosurgical guidance. , 2016, Neurosurgical focus.

[18]  Jong-Hee Chang,et al.  Use of optical coherence tomography to predict visual outcome in parachiasmal meningioma. , 2015, Journal of neurosurgery.

[19]  Andrew D. Nichols,et al.  Optical coherence tomography predicts visual outcome for pituitary tumors , 2015, Journal of Clinical Neuroscience.

[20]  B. Delemer,et al.  Prognostic value of retinal nerve fiber layer thickness for postoperative peripheral visual field recovery in optic chiasm compression. , 2014, Journal of neurosurgery.

[21]  D. Hood,et al.  Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. , 2014, Investigative ophthalmology & visual science.

[22]  T. C. Chang,et al.  Utilizing optical coherence tomography in diagnosing a unique presentation of chiasmal hypoplasia variant of septo-optic dysplasia. , 2014, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[23]  P. Subramanian,et al.  Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas , 2013, British Journal of Ophthalmology.

[24]  S. Hamann,et al.  Optical coherence tomography documenting retinal nerve fiber loss in traumatic optic chiasmal syndrome , 2012, Acta ophthalmologica.

[25]  T. Schwartz,et al.  Endoscopic endonasal compared with microscopic transsphenoidal and open transcranial resection of giant pituitary adenomas , 2012, Pituitary.

[26]  Chan Hee Moon,et al.  Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. , 2011, Investigative ophthalmology & visual science.

[27]  Chan Hee Moon,et al.  The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. , 2011, Investigative ophthalmology & visual science.

[28]  Gadi Wollstein,et al.  Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis , 2010, British Journal of Ophthalmology.

[29]  M. Monteiro,et al.  Predictive factors for the development of visual loss in patients with pituitary macroadenomas and for visual recovery after optic pathway decompression. , 2010, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[30]  Charlotta Johansson,et al.  The role of optical coherence tomography in the detection of pituitary adenoma , 2009, Acta ophthalmologica.

[31]  James J. Evans,et al.  In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. , 2008, Investigative ophthalmology & visual science.

[32]  Shin Jung,et al.  Prognostic factors of postoperative visual outcomes in tuberculum sellae meningioma , 2008, British journal of neurosurgery.

[33]  N. Miller,et al.  Peripapillary Nerve Fiber Layer Thickness Measured by Optical Coherence Tomography in Patients With No Light Perception From Long-Standing Nonglaucomatous Optic Neuropathies , 2007, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[34]  S. Vander Hoorn,et al.  Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. , 2006, Investigative ophthalmology & visual science.

[35]  K. Gnanalingham,et al.  The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: predictive factors for a good outcome , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[36]  Makoto Nakamura,et al.  Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs. , 2004, Ophthalmology.

[37]  M. Monteiro,et al.  Optical coherence tomography analysis of axonal loss in band atrophy of the optic nerve , 2004, British Journal of Ophthalmology.

[38]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[39]  J. Fujimoto Optical coherence tomography for ultrahigh resolution in vivo imaging , 2003, Nature Biotechnology.

[40]  N. Newman,et al.  Stages of improvement in visual fields after pituitary tumor resection. , 2000, American journal of ophthalmology.

[41]  D. W. Barnett,et al.  The microsurgical anatomy of the superior hypophyseal artery. , 1994, Neurosurgery.

[42]  M. Kupersmith,et al.  Visual recovery after transsphenoidal removal of pituitary adenomas. , 1985, Neurosurgery.

[43]  E R Laws,et al.  Transsphenoidal decompression of the optic nerve and chiasm. Visual results in 62 patients. , 1977, Journal of neurosurgery.

[44]  D. Kravitz Visual-field interpretations in chiasmal lesions. , 1948, American journal of ophthalmology.

[45]  P. Ajler,et al.  [Optical coherence tomography as a predictor of visual recovery in patients with pituitary macroadenomas]. , 2018, Surgical neurology international.

[46]  Min Sun,et al.  Predictive factors of visual function recovery after pituitary adenoma resection: a literature review and Meta-analysis. , 2017, International journal of ophthalmology.

[47]  G. Tomita,et al.  Baseline thickness of macular ganglion cell complex predicts progression of visual field loss , 2013, Graefe's Archive for Clinical and Experimental Ophthalmology.

[48]  A. Vighetto,et al.  Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. , 2009, American journal of ophthalmology.