Dynamic molecular changes during the first week of human life follow a robust developmental trajectory

Systems biology can unravel complex biology but has not been extensively applied to human newborns, a group highly vulnerable to a wide range of diseases. We optimized methods to extract transcriptomic, proteomic, metabolomic, cytokine/chemokine, and single cell immune phenotyping data from <1 ml of blood, a volume readily obtained from newborns. Indexing to baseline and applying innovative integrative computational methods reveals dramatic changes along a remarkably stable developmental trajectory over the first week of life. This is most evident in changes of interferon and complement pathways, as well as neutrophil-associated signaling. Validated across two independent cohorts of newborns from West Africa and Australasia, a robust and common trajectory emerges, suggesting a purposeful rather than random developmental path. Systems biology and innovative data integration can provide fresh insights into the molecular ontogeny of the first week of life, a dynamic developmental phase that is key for health and disease.The first week of life impacts health for all of life, but the mechanisms are little-understood. Here the authors extract multi-omic data from small volumes of blood to study the dynamic molecular changes during the first week of life, revealing a robust developmental trajectory common to different populations.

Ryan R Brinkman | Hanno Steen | Cai Bing | Kim-Anh Lê Cao | Al Ozonoff | Ofer Levy | Erin E. Gill | Tobias R Kollmann | Rym Ben-Othman | Reza Falsafi | Sofia M. Vignolo | Joann Diray-Arce | Alansana Darboe | Beate Kampmann | Robert E W Hancock | Mehrnoush Malek | Davide Ferrari | D. Ferrari | H. Steen | R. Hancock | O. Levy | R. Brinkman | A. Ozonoff | W. Pomat | Mehrnoush Malek | S. Tebbutt | A. Marchant | S. V. van Haren | Nelly Amenyogbe | K. L. Cao | Cai Bing | C. Shannon | T. Bennike | B. Kampmann | R. Falsafi | M. Pettengill | P. Richmond | G. Sanchez-Schmitz | Asimenia Angelidou | Scott J Tebbutt | A. Angelidou | T. Kollmann | A. H. van den Biggelaar | Kerry McEnaney | Peter C Richmond | Simon D. van Haren | Amrit Singh | Amrit Singh | Erin E Gill | O. Idoko | Amy H Lee | Casey P Shannon | Nelly Amenyogbe | Tue B Bennike | Olubukola T Idoko | William S Pomat | Simon D van Haren | Momoudou Cox | Daniel J Harbeson | Daniel He | Samuel J Hinshaw | Jorjoh Ndure | Jainaba Njie-Jobe | Matthew A Pettengill | Rebecca Ford | Gerard Saleu | Geraldine Masiria | John Paul Matlam | Wendy Kirarock | Elishia Roberts | Guzmán Sanchez-Schmitz | Kinga K Smolen | Anita H J van den Biggelaar | Danny Harbeson | R. Ben-Othman | J. Njie-jobe | A. Lee | G. Masiria | John-Paul Matlam | R. Ford | J. Diray-Arce | K. Smolen | A. Darboe | Jorjoh Ndure | E. Roberts | G. Saleu | Daniel He | W. Kirarock | S. Hinshaw | Momoudou Cox | K. Cao | Diana Ken Kerry Sofia Arnaud Vo Kraft McEnaney Vignolo Marchant | Diana Vo | Ken Kraft | Guzmán Sanchez-Schmitz | Danny J. Harbeson

[1]  Yuri Kotliarov,et al.  Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses , 2014, Cell.

[2]  Karin Breuer,et al.  InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation , 2012, Nucleic Acids Res..

[3]  Peter D. Karp,et al.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2013, Nucleic Acids Res..

[4]  Florian Rohart,et al.  mixOmics: an R package for ‘omics feature selection and multiple data integration , 2017 .

[5]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[6]  Peter Ghazal,et al.  Identification of a human neonatal immune-metabolic network associated with bacterial infection , 2014, Nature Communications.

[7]  John S. Tsang,et al.  Utilizing population variation, vaccination, and systems biology to study human immunology , 2015, Trends in immunology.

[8]  Michel Goldman,et al.  Interferon regulatory factor 3-dependent responses to lipopolysaccharide are selectively blunted in cord blood cells. , 2007, Blood.

[9]  Robert Gentleman,et al.  flowCore: a Bioconductor package for high throughput flow cytometry , 2009, BMC Bioinformatics.

[10]  P. Gluckman,et al.  Early-life prevention of non-communicable diseases , 2013, The Lancet.

[11]  G. Smyth,et al.  Camera: a competitive gene set test accounting for inter-gene correlation , 2012, Nucleic acids research.

[12]  Jianguo Xia,et al.  NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data , 2015, Nature Protocols.

[13]  Shuzhao Li,et al.  Metabolic Phenotypes of Response to Vaccination in Humans , 2017, Cell.

[14]  P. Cooper,et al.  Single-Cell Analysis of Innate Cytokine Responses to Pattern Recognition Receptor Stimulation in Children across Four Continents , 2014, The Journal of Immunology.

[15]  R. Christensen,et al.  Reference Intervals in Neonatal Hematology. , 2015, Clinics in perinatology.

[16]  Amir K. Foroushani,et al.  Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures , 2013, PeerJ.

[17]  Peter Langfelder,et al.  Eigengene networks for studying the relationships between co-expression modules , 2007, BMC Systems Biology.

[18]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[19]  Sailesh Kumar,et al.  Cyclo-oxygenase (COX) inhibitors for treating preterm labour. , 2015, The Cochrane database of systematic reviews.

[20]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[21]  Hanno Steen,et al.  A Cost-Effective High-Throughput Plasma and Serum Proteomics Workflow Enables Mapping of the Molecular Impact of Total Pancreatectomy with Islet Autotransplantation. , 2018, Journal of proteome research.

[22]  Jianqing Fan,et al.  A Selective Overview of Variable Selection in High Dimensional Feature Space. , 2009, Statistica Sinica.

[23]  R. Macfaul,et al.  Diagnostic Value of Serum Testosterone Measurement in Infancy: Two Case Reports , 1989, Annals of clinical biochemistry.

[24]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[25]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[26]  F. Iborra,et al.  Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function , 2013, Haematologica.

[27]  R. L. Thorndike Who belongs in the family? , 1953 .

[28]  L. Gatto,et al.  Interferon regulatory factor 7‐mediated responses are defective in cord blood plasmacytoid dendritic cells , 2008, European journal of immunology.

[29]  Age K. Smilde,et al.  Multivariate paired data analysis: multilevel PLSDA versus OPLSDA , 2009, Metabolomics.

[30]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[31]  S. Mazmanian,et al.  Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. , 2017, Immunity.

[32]  H. Ford,et al.  Molecular signaling in necrotizing enterocolitis: regulation of intestinal COX-2 expression. , 2007, Journal of pediatric surgery.

[33]  Henning Hermjakob,et al.  The Reactome pathway Knowledgebase , 2015, Nucleic acids research.

[34]  M. C. Jones,et al.  The Statistical Analysis of Compositional Data , 1986 .

[35]  Robert E. W. Hancock,et al.  MetaBridge: enabling network-based integrative analysis via direct protein interactors of metabolites , 2018, Bioinform..

[36]  Young Woong Kim,et al.  Identifying Molecular Mechanisms of the Late-Phase Asthmatic Response by Integrating Cellular, Gene, and Metabolite Levels in Blood. , 2016, Annals of the American Thoracic Society.

[37]  V. Nizet,et al.  Age-Appropriate Functions and Dysfunctions of the Neonatal Neutrophil , 2017, Front. Pediatr..

[38]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Howie,et al.  Blood sample volumes in child health research: review of safe limits. , 2011, Bulletin of the World Health Organization.

[40]  O. Levy,et al.  Systems vaccinology: a promise for the young and the poor , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  Sandra Romero-Steiner,et al.  Molecular signatures of antibody responses derived from a systems biological study of 5 human vaccines , 2013, Nature Immunology.

[42]  J. Mikes,et al.  Stereotypic Immune System Development in Newborn Children , 2018, Cell.

[43]  Josselyn E. Garcia-Perez,et al.  The cellular composition of the human immune system is shaped by age and cohabitation , 2015, Nature Immunology.

[44]  Freddy Radtke,et al.  Notch regulation of lymphocyte development and function , 2004, Nature Immunology.

[45]  Kim-Anh Lê Cao,et al.  DIABLO - an integrative, multi-omics, multivariate method for multi-group classification , 2017 .

[46]  H. Steen,et al.  High-Throughput Parallel Proteomic Sample Preparation Using 96-Well Polyvinylidene Fluoride (PVDF) Membranes and C18 Purification Plates. , 2017, Methods in molecular biology.

[47]  Shannon McWeeney,et al.  MIFlowCyt: The minimum information about a flow cytometry experiment , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[48]  Alma E. Cavazos-Gaither,et al.  Experiment , 2018, Encyclopedia of Evolutionary Psychological Science.

[49]  Holger H. Hoos,et al.  Enhanced flowType/RchyOptimyx: a Bioconductor pipeline for discovery in high-dimensional cytometry data , 2014, Bioinform..

[50]  Corey D. DeHaven,et al.  Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. , 2009, Analytical chemistry.

[51]  Damien Chaussabel,et al.  A vision and a prescription for big data–enabled medicine , 2015, Nature Immunology.

[52]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[53]  Kim-Anh Lê Cao,et al.  mixOmics: An R package for ‘omics feature selection and multiple data integration , 2017, bioRxiv.

[54]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[55]  John D Lambris,et al.  Protection of host cells by complement regulators , 2016, Immunological reviews.

[56]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[57]  John W. Froehlich,et al.  A Normative Study of the Synovial Fluid Proteome from Healthy Porcine Knee Joints , 2014, Journal of proteome research.

[58]  Scott J. Tebbutt,et al.  Two-Stage, In Silico Deconvolution of the Lymphocyte Compartment of the Peripheral Whole Blood Transcriptome in the Context of Acute Kidney Allograft Rejection , 2014, PloS one.

[59]  Greg Finak,et al.  flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification , 2015, Bioinform..

[60]  M. Gale,et al.  Immune signaling by RIG-I-like receptors. , 2011, Immunity.

[61]  Guangchuang Yu,et al.  ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. , 2016, Molecular bioSystems.

[62]  Nelly Amenyogbe,et al.  Outgrowing the Immaturity Myth: The Cost of Defending From Neonatal Infectious Disease , 2018, Front. Immunol..

[63]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[64]  Damien Chaussabel,et al.  Democratizing systems immunology with modular transcriptional repertoire analyses , 2014, Nature Reviews Immunology.

[65]  Raymond T. Ng,et al.  SABRE: a method for assessing the stability of gene modules in complex tissues and subject populations , 2016, BMC Bioinformatics.

[66]  Philippe Besse,et al.  Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems , 2011, BMC Bioinformatics.

[67]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[68]  G. Alter,et al.  Neonate-omics: Charting the Unknown Immune Response in Early Life , 2018, Cell.

[69]  S. Self,et al.  Neonatal Innate TLR-Mediated Responses Are Distinct from Those of Adults1 , 2009, The Journal of Immunology.

[70]  M. Abdelhaleem RNA helicases: regulators of differentiation. , 2005, Clinical biochemistry.

[71]  D. Stevenson,et al.  Skin-to-skin contact after birth and the natural course of neurosteroid levels in healthy term newborns , 2017, Journal of Perinatology.

[72]  M. Kanehisa,et al.  Computation with the KEGG pathway database. , 1998, Bio Systems.

[73]  M. Bøgsted,et al.  Proteome Analysis of Rheumatoid Arthritis Gut Mucosa. , 2017, Journal of proteome research.

[74]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[75]  Huiru Zheng,et al.  Permutation – based statistical tests for multiple hypotheses , 2008, Source Code for Biology and Medicine.

[76]  H. Steen,et al.  MStern Blotting–High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates* , 2015, Molecular & Cellular Proteomics.

[77]  Vincent Rouilly,et al.  Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses. , 2016, Cell reports.

[78]  Peng Liu,et al.  Quick calculation for sample size while controlling false discovery rate with application to microarray analysis , 2007, Bioinform..

[79]  S. Self,et al.  Ontogeny of Toll-Like Receptor Mediated Cytokine Responses of Human Blood Mononuclear Cells , 2010, PloS one.

[80]  Kim-Anh Lê Cao,et al.  A novel approach for biomarker selection and the integration of repeated measures experiments from two assays , 2012, BMC Bioinformatics.

[81]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[82]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.