Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae

[1]  B. Hahn-Hägerdal,et al.  Anaerobic Xylose Fermentation by Recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2, andXKS1 in Mineral Medium Chemostat Cultures , 2000, Applied and Environmental Microbiology.

[2]  Paul Christakopoulos,et al.  Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. , 2005, Metabolic engineering.

[3]  J. Nielsen,et al.  Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis , 2000, Yeast.

[4]  Seiya Watanabe,et al.  Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae , 2008, Applied Microbiology and Biotechnology.

[5]  D. Jones,et al.  Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. , 1981, Journal of chromatography.

[6]  Jack T Pronk,et al.  High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? , 2003, FEMS yeast research.

[7]  Liang Zhang,et al.  Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast , 2011, Journal of Industrial Microbiology & Biotechnology.

[8]  B. Hahn-Hägerdal,et al.  Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation , 1997, Applied Microbiology and Biotechnology.

[9]  Jin Hou,et al.  Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae , 2009, Applied Microbiology and Biotechnology.

[10]  W. A. Scheffers,et al.  Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. , 1990, Journal of general microbiology.

[11]  M. Penttilä,et al.  Engineering Redox Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces cerevisiae , 2003, Applied and Environmental Microbiology.

[12]  J. Pronk,et al.  Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. , 2007, Advances in biochemical engineering/biotechnology.

[13]  L. Olsson,et al.  Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae , 2007, Proceedings of the National Academy of Sciences.

[14]  Lena Gustafsson,et al.  Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae , 2004, Molecular and Cellular Biochemistry.

[15]  S. W. Kim,et al.  Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate. , 2010, Journal of biotechnology.

[16]  Gregory Stephanopoulos,et al.  Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. , 2012, Metabolic engineering.

[17]  Akihiko Kondo,et al.  Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization , 2009, Applied Microbiology and Biotechnology.

[18]  Liang Zhang,et al.  Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. , 2011, Metabolic engineering.

[19]  A. Blomberg,et al.  Physiology of osmotolerance in fungi. , 1992, Advances in microbial physiology.

[20]  M. Cotta,et al.  Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24 , 2013, Biotechnology for Biofuels.

[21]  T. Jeffries,et al.  Engineering yeasts for xylose metabolism. , 2006, Current opinion in biotechnology.

[22]  Jack T Pronk,et al.  Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. , 2005, FEMS yeast research.

[23]  E. Nevoigt,et al.  The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae , 2013, Microbial Cell Factories.

[24]  B. Hahn-Hägerdal,et al.  Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae , 2009, Biotechnology for biofuels.

[25]  Yu Shen,et al.  Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae , 2007, Letters in applied microbiology.

[26]  Bärbel Hahn-Hägerdal,et al.  Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. , 2007, Advances in biochemical engineering/biotechnology.

[27]  J M Thevelein,et al.  The two isoenzymes for yeast NAD+‐dependent glycerol 3‐phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation , 1997, The EMBO journal.

[28]  Yanyan Zhang,et al.  Improvement of L-Arabinose Fermentation by Modifying the Metabolic Pathway and Transport in Saccharomyces cerevisiae , 2013, BioMed research international.

[29]  Jens Nielsen,et al.  Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. , 2012, FEMS yeast research.

[30]  Yu Shen,et al.  An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile , 2012, Applied Microbiology and Biotechnology.

[31]  J Villadsen,et al.  Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. , 2000, Metabolic engineering.

[32]  Jing-Jing Liu,et al.  Decreased Xylitol Formation during Xylose Fermentation in Saccharomyces cerevisiae Due to Overexpression of Water-Forming NADH Oxidase , 2011, Applied and Environmental Microbiology.

[33]  J. Förster,et al.  In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. , 2006, Metabolic engineering.

[34]  G. Shi,et al.  Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae , 2011, Biotechnology Letters.

[35]  Akihiko Kondo,et al.  Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol , 2009, Applied Microbiology and Biotechnology.

[36]  M. Oldiges,et al.  Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. , 2009, Metabolic engineering.

[37]  B. Hahn-Hägerdal,et al.  Towards industrial pentose-fermenting yeast strains , 2007, Applied Microbiology and Biotechnology.

[38]  D. Brat,et al.  Functional Expression of a Bacterial Xylose Isomerase in Saccharomyces cerevisiae , 2009, Applied and Environmental Microbiology.

[39]  W. A. Scheffers,et al.  Alcoholic fermentation by ‘non‐fermentative’ yeasts , 1986, Yeast.

[40]  H. Alper,et al.  Directed Evolution of Xylose Isomerase for Improved Xylose Catabolism and Fermentation in the Yeast Saccharomyces cerevisiae , 2012, Applied and Environmental Microbiology.

[41]  Jack T Pronk,et al.  Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. , 2005, FEMS yeast research.

[42]  Yu Shen,et al.  Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. , 2012, Metabolic engineering.

[43]  J. Pronk,et al.  Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. , 2004, FEMS yeast research.