Isogeometric analysis of first and second strain gradient elasticity

The elastic energy in the conventional Cauchy continuum model depends on the gradient of the displacement field, which is not adequate to show the behavior of a system under point and line forces. Applying these kinds of boundary conditions to the continuum will lead to singularities. To overcome this problem, a generalization of the Cauchy continuum concept is a choice. In this paper, isogeometric analysis is used to simulate the behavior of second- and third-gradient materials. As expected, a significant improvement in the efficiency and accuracy of the attained results compared to the conventional finite element method is noticed.

[1]  E. Aifantis On the role of gradients in the localization of deformation and fracture , 1992 .

[2]  M. Lazar,et al.  Dislocations in gradient elasticity revisited , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Dionisio Del Vescovo,et al.  Theoretical and experimental dynamic analysis aimed at the improvement of an acoustic method for fresco detachment diagnosis , 2009 .

[4]  Francesco dell’Isola,et al.  Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching , 2015 .

[5]  Les A. Piegl,et al.  On NURBS: A Survey , 2004 .

[6]  Thomas J. R. Hughes,et al.  NURBS as a Pre‐Analysis Tool: Geometric Design and Mesh Generation , 2009 .

[7]  J. Ganghoffer,et al.  Construction of micropolar continua from the asymptotic homogenization of beam lattices , 2012 .

[8]  Alfio Grillo,et al.  Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage , 2014 .

[9]  Tomasz Lekszycki,et al.  Problems of identification of mechanical characteristics of viscoelastic composites , 1998 .

[10]  Ivan Giorgio,et al.  Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model , 2017 .

[11]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[12]  M. Pulvirenti,et al.  Macroscopic Description of Microscopically Strongly Inhomogenous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials , 2015, 1504.08015.

[13]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[14]  Pierre Seppecher,et al.  Linear elastic trusses leading to continua with exotic mechanical interactions , 2011 .

[15]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[16]  Francesco dell’Isola,et al.  The complete works of Gabrio Piola: Volume I Commented English Translation - English and Italian Edition , 2014 .

[17]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[18]  N. Olhoff,et al.  Modelling and identification of viscoelastic properties of vibrating sandwich beams , 1992 .

[19]  Tomasz Lekszycki,et al.  Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients , 2015 .

[20]  Tomasz Lekszycki,et al.  Modeling of an initial stage of bone fracture healing , 2015 .

[21]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[22]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[23]  Francesco dell’Isola,et al.  Geometrically nonlinear higher-gradient elasticity with energetic boundaries , 2013 .

[24]  Sergei Khakalo,et al.  Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software , 2017, Comput. Aided Des..

[25]  Alessandro Reali,et al.  Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates , 2017 .

[26]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[27]  Alessandro Della Corte,et al.  Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof , 2015 .

[28]  Victor A. Eremeyev,et al.  Micropolar Shells as Two-dimensional Generalized Continua Models , 2011 .

[29]  Giancarlo Sangalli,et al.  Fast formation of isogeometric Galerkin matrices by weighted quadrature , 2016, 1605.01238.

[30]  Alfio Grillo,et al.  Elasticity and permeability of porous fibre-reinforced materials under large deformations , 2012 .

[31]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[32]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[33]  A. Cauchy Oeuvres complètes: Mémoire sur les vibrations d'un double système de molécules et de l'éther contenu dans un corps cristallisé , 2009 .

[34]  G. Felice,et al.  Homogenization for materials with microstructure , 2000 .

[35]  D. J. Ewins,et al.  Identifying and quantifying structural nonlinearities in engineering applications from measured frequency response functions , 2011 .

[36]  Ivan Giorgio,et al.  Finite-Element Analysis of Polyhedra under Point and Line Forces in Second-Strain Gradient Elasticity , 2017 .

[37]  J. Altenbach,et al.  On generalized Cosserat-type theories of plates and shells: a short review and bibliography , 2010 .

[38]  A. Bertram Finite gradient elasticity and plasticity: a constitutive mechanical framework , 2015 .

[39]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[40]  A. Della Corte,et al.  The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  A.P.S. Selvadurai,et al.  Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: Experiments, theory and computations , 2012 .

[42]  Nicola Luigi Rizzi,et al.  Heterogeneous elastic solids: a mixed homogenization-rigidification technique , 2001 .

[43]  M. Lazar The fundamentals of non-singular dislocations in the theory of gradient elasticity: Dislocation loops and straight dislocations , 2012, 1209.1997.

[44]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[45]  Francesco dell’Isola,et al.  Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution , 2016 .

[46]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[47]  Jean-François Ganghoffer,et al.  Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization , 2013 .

[48]  Paul Steinmann,et al.  Isogeometric analysis of 2D gradient elasticity , 2011 .

[49]  S. M. Mousavi,et al.  Analysis of plate in second strain gradient elasticity , 2014 .

[50]  M. Lazar,et al.  Dislocations in second strain gradient elasticity , 2006 .