Three‐dimensional seismic models of the Earth's mantle

Accurate models of the distribution of elastic heterogeneity in the Earth's mantle are important in many areas of geophysics. The purpose of this paper is to characterize and compare quantitatively a set of recent three-dimensional models of the elastic structure of the Earth, to assess their similarities and differences, and to analyze their fit to one class of data in order to highlight fruitful directions for future research. The aspherical models considered are the following: M84C (Woodhouse and Dziewonski, 1984), LO2.56 (Dziewonski, 1984), MDLSH (Tanimoto, 1990a), SH.10c.17 (Masters et al., 1992), and S12_WM13 (Su et al., 1994). Through much of the discussion, M84C and LO2.56 are combined into a single whole mantle model, M84C + LO2.56. The fit of each model to previously tabulated even degree normal mode structure coefficients taken from Smith and Masters (1989a) and Ritzwoller et al. (1988) for multiplets along the normal mode fundamental and first, second, and fifth overtone branches is also presented. Rather than concentrating on detailed comparisons of specific features of the models, analyses of these models are general and statistical in nature. In particular, we focus on a comparison of the amplitude and the radial and geographical distribution of heterogeneity in each model and how variations in each affect the fit to the normal mode observations. In general, the results of the comparisons between the models are encouraging, especially with respect to the geographical distribution of heterogeneity and in the fit to the normal mode data sensitive to the upper mantle and lowermost lower mantle. There remain, however, significant discrepancies in amplitude and in the radial distribution of heterogeneity, especially near the top of the upper mantle and near the top of the lower mantle. The confident use of these models to constrain compositional and dynamical information about the mantle will await the resolution of these discrepancies. The factors that may be responsible for the differences in the models and/or for the misfit between the observed and predicted normal mode data are divided into two types: intrinsic (or procedural) and extrinsic (or structural). We discuss only three extrinsic factors at length here, including errors in the reference crustal models, unmodeled topography on discontinuities in the interior of the mantle, and errors in the assumed relationships between shear (υs) and compressional (υp) heterogeneity.

[1]  Robert W. Clayton,et al.  Lower mantle heterogeneity, dynamic topography and the geoid , 1985, Nature.

[2]  A. Dziewoński,et al.  Global Images of the Earth's Interior , 1987, Science.

[3]  G. Masters,et al.  The effect of Coriolis coupling of free oscillation multiplets on the determination of aspherical Earth structure , 1989 .

[4]  G. Masters,et al.  Observations of anomalous splitting and their interpretation in terms of aspherical structure , 1986 .

[5]  G. Masters,et al.  Aspherical structure constraints from free oscillation frequency and attenuation measurements , 1989 .

[6]  D. Giardini,et al.  Three-dimensional structure of the Earth from splitting in free-oscillation spectra , 1987, Nature.

[7]  P. Silver,et al.  Deep Slabs, Geochemical Heterogeneity, and the Large-Scale Structure of Mantle Convection: Investigation of an Enduring Paradox , 1988 .

[8]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[9]  T. Jordan,et al.  Mantle layering from ScS reverberations: 3. The upper mantle , 1991 .

[10]  Bradford H. Hager,et al.  Large‐scale heterogeneities in the lower mantle , 1977 .

[11]  Jon Berger,et al.  Peculiarities of surface-wave propagation across central Eurasia , 1992, Bulletin of the Seismological Society of America.

[12]  Olafur Gudmundsson,et al.  Stochastic analysis of global traveltime data: mantle heterogeneity and random errors in the ISC data , 1990 .

[13]  Robert J. Geller,et al.  Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method , 1994 .

[14]  Toshiro Tanimoto,et al.  Predominance of Large-Scale Heterogeneity and the Shift of Velocity Anomalies between the Upper and Lower Mantle , 1990 .

[15]  A. L. Hales,et al.  The travel times of S and SKS , 1970 .

[16]  D. L. Anderson,et al.  Worldwide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion , 1982 .

[17]  Don W. Vasco,et al.  Tomographic inversions for mantle P wave velocity structure based on the minimization of l 2 and l 1 norms of International Seismological Centre Travel Time Residuals , 1993 .

[18]  Surface Wave Group Velocity Tomography of East Asia. Part 1 , 1993 .

[19]  P. Shearer Global mapping of upper mantle reflectors from long-period SS precursors , 1993 .

[20]  Adam M. Dziewonski,et al.  Parametrically simple earth models consistent with geophysical data , 1975 .

[21]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[22]  T. Tanimoto Modelling curved surface wave paths: membrane surface wave synthetics , 1990 .

[23]  D. L. Anderson,et al.  Mapping convection in the mantle , 1984 .

[24]  D. Forsyth,et al.  The anisotropic structure of the upper mantle in the Pacific , 1989 .

[25]  J. Tromp,et al.  Variational principles for surface wave propagation on a laterally heterogeneous Earth—II. Frequency-domain JWKB theory , 1992 .

[26]  G. Masters,et al.  Lower-mantle structure from ScS–S differential travel times , 1991, Nature.

[27]  Don L. Anderson,et al.  Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s , 1985 .

[28]  Donald H. Eckhardt,et al.  Correlations between global features of terrestrial fields , 1984 .

[29]  F. Gilbert,et al.  An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  J. Lévêque,et al.  Inversion of multimode surface wave data: evidence for sub-lithospheric anisotropy , 1985 .

[31]  Thomas H. Jordan,et al.  Mantle layering from ScS reverberations: 2. The transition zone , 1991 .

[32]  Thomas H. Jordan,et al.  Aspherical Earth structure from fundamental spheroidal-mode data , 1982, Nature.

[33]  F. Dahlen,et al.  Asymptotic normal modes of a laterally heterogeneous Earth , 1985 .

[34]  J. Woodhouse,et al.  Amplitude, phase and path anomalies of mantle waves , 1986 .

[35]  H. Takeuchi,et al.  Seismic Surface Waves , 1972 .

[36]  T. Jordan A procedure for estimating lateral variations from low-frequency eigenspectra data , 1978 .

[37]  M. Richards,et al.  A Detailed Map of the 660-Kilometer Discontinuity Beneath the Izu-Bonin Subduction Zone , 1993, Science.

[38]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy: 3. Inversion , 1986 .

[39]  D. Giardini,et al.  Splitting Functions of Long-Period Normal Modes of the Earth , 1988 .

[40]  A. Dziewoński,et al.  Deep origin of mid-ocean-ridge seismic velocity anomalies , 1992, Nature.

[41]  Yosihiko Ogata,et al.  Whole mantle P-wave travel time tomography , 1990 .

[42]  E. Lavely,et al.  Long-period surface waves and mantle boundary undulations , 1994 .

[43]  R. Snieder,et al.  A new formalism for the effect of lateral heterogeneity on normal modes and surface waves—I: isotropic perturbations, perturbations of interfaces and gravitational perturbations , 1988 .

[44]  A. Rodgers,et al.  Inference of core-mantle boundary topography from ISC PcP and PKP traveltimes , 1993 .

[45]  Véronique Dehant,et al.  The response of a compressible, non-homogeneous Earth to internal loading: Theory. , 1991 .

[46]  D. L. Anderson,et al.  Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy: 1. Analysis of Great Circle Phase Velocities , 1983 .

[47]  T. Tanimoto,et al.  Ridges, hotspots and their interaction as observed in seismic velocity maps , 1992, Nature.

[48]  Don L. Anderson,et al.  A seismic equation of state II. Shear properties and thermodynamics of the lower mantle , 1987 .

[49]  Toshiro Tanimoto,et al.  Waveforms of long-period body waves in a slightly aspherical earth model , 1993 .

[50]  Andrea Morelli,et al.  Topography of the core–mantle boundary and lateral homogeneity of the liquid core , 1987, Nature.

[51]  B. Romanowicz Multiplet-multiplet coupling due to lateral heterogeneity: asymptotic effects on the amplitude and frequency of the Earth's normal modes , 1987 .

[52]  G. Poupinet,et al.  P-wave residuals in Canada , 1977 .

[53]  J. Vidale,et al.  Upper-mantle seismic discontinuities and the thermal structure of subduction zones , 1992, Nature.

[54]  H. Jeffreys,et al.  Seismic travel times for central Asian epicentres , 1980 .

[55]  B. Romanowicz,et al.  3-D upper mantle shear velocity and attenuation from fundamental mode free oscillation data , 1990 .

[56]  Jean-Paul Montagner,et al.  Can seismology tell us anything about convection in the mantle , 1994 .

[57]  Naohiro Soga,et al.  Some elastic constant data on minerals relevant to geophysics , 1968 .

[58]  W. Peltier,et al.  Mantle phase transitions and layered chaotic convection , 1992 .

[59]  D. Weidner,et al.  Elasticity of MgSiO3 in the Perovskite Structure , 1989, Science.

[60]  G. Masters,et al.  Constraining aspherical structure with low-degree interaction coefficients: Application to uncoupled multiplets , 1988 .

[61]  Jeffrey Park Roughness constraints in surface wave tomography , 1989 .

[62]  D. J. Doornbos,et al.  Models of the core-mantle boundary and the travel times of internally reflected core phases , 1989 .

[63]  E. Lavely,et al.  Average effects of large-scale convection on helioseismic line widths and frequencies , 1993 .

[64]  Local eigenfrequency and its uncertainty inferred from fundamental spheroidal mode frequency shifts , 1987 .

[65]  Barbara Romanowicz Seismic Tomography of the Earth's Mantle , 1991 .

[66]  T. Jordan,et al.  Aspherical structure of the core‐mantle boundary from PKP travel times , 1986 .

[67]  H. Kanamori,et al.  Geometric effects of global lateral heterogeneity on long‐period surface wave propagation , 1985 .

[68]  W. Peltier,et al.  Lateral heterogeneity in the convecting mantle , 1986 .

[69]  Jeffrey Park,et al.  Upper mantle anisotropy and coupled-mode long-period surface waves , 1993 .

[70]  A. L. Hales,et al.  P and S Travel Time Anomalies and their Interpretation , 1967 .

[71]  Jeffrey Park,et al.  Normal mode multiplet coupling along a dispersion branch , 1991 .

[72]  W. Spakman,et al.  The Hellenic Subduction Zone: A tomographic image and its geodynamic implications , 1988 .

[73]  Freeman Gilbert,et al.  Coupled free oscillations of an aspherical, dissipative, rotating Earth: Galerkin theory , 1986 .

[74]  Jean-Paul Montagner,et al.  Global upper mantle tomography of seismic velocities and anisotropies , 1991 .

[75]  D. Helmberger,et al.  Travel times of S and SKS: Implications for three‐dimensional lower mantle structure beneath the central Pacific , 1993 .

[76]  A. Dziewoński,et al.  Seismic Surface Waves and Free Oscillations in a Regionalized Earth Model , 1982 .

[77]  F. Pollitz,et al.  Analysis of Rayleigh wave refraction from three‐component seismic spectra , 1993 .

[78]  D. Chung,et al.  Elasticity and Equations of State of Olivines in the Mg2SiO4-Fe2SiO4 System , 1971 .

[79]  M. Ritzwoller,et al.  The nature and cause of polarization anomalies of surface waves crossing northern and central Eurasia , 1994 .

[80]  Toshiro Tanimoto,et al.  High-resolution global upper mantle structure and plate tectonics , 1993 .

[81]  D. Giardini,et al.  Large‐scale three‐dimensional even‐degree structure of the Earth from splitting of long‐period normal modes , 1991 .

[82]  A. Dziewoński,et al.  Seismic modelling of the Earth’s large-scale three-dimensional structure , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[83]  Jeffrey Park,et al.  Anisotropy and coupled free oscillations: simplified models and surface wave observations , 1992 .

[84]  P. Richards,et al.  Borovoye Geophysical Observatory, Kazakhstan , 1992 .

[85]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[86]  Adam M. Dziewonski,et al.  Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6 , 1984 .

[87]  T. Jordan,et al.  Comparisons Between Seismic Earth Structures and Mantle Flow Models Based on Radial Correlation Functions , 1993, Science.

[88]  Don W. Vasco,et al.  Formal inversion of ISC arrival times for mantle P-velocity structure , 1993 .

[89]  F. A. Dahlen,et al.  The Effect of A General Aspherical Perturbation on the Free Oscillations of the Earth , 1978 .

[90]  R. Geller,et al.  Inversion for laterally heterogeneous upper mantle S-wave velocity structure using iterative waveform inversion , 1993 .

[91]  J. Woodhouse The coupling and attenuation of nearly resonant multiplets in the Earth's free oscillation spectrum , 1980 .

[92]  C. A. Stewart Thermal convection in the Earth's mantle: Mode coupling induced by temperature‐dependent viscosity in a three‐dimensional spherical shell , 1992 .

[93]  Robert W. Clayton,et al.  Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid , 1989 .

[94]  T. Tanimoto,et al.  S-wave velocity, basalt chemistry and bathymetry along the Mid-Atlantic Ridge , 1994 .

[95]  D. Giardini,et al.  The relative amplitudes of mantle heterogeneity in P velocity, S velocity and density from free-oscillation data , 1991 .

[96]  R. Snieder,et al.  Topography of the 400 km discontinuity from observations of long-period P400P phases , 1992 .

[97]  Wei-jia Su,et al.  Degree 12 model of shear velocity heterogeneity in the mantle , 1994 .

[98]  Wei-jia Su,et al.  Predominance of long-wavelength heterogeneity in the mantle , 1991, Nature.

[99]  Peter M. Shearer,et al.  Imaging global body wave phases by stacking long‐period seismograms , 1991 .

[100]  R. Carlson,et al.  The large-scale structure of convection in the Earth's mantle , 1990, Nature.

[101]  R. Uhrhammer S-wave travel times for a spherically averaged earth , 1978 .

[102]  A. Rodgers,et al.  Can the differential sensitivity of body wave, mantle wave, and normal mode data resolve the trade-off between transition zone structure and boundary topography? , 1994 .

[103]  P. Shearer,et al.  Global mapping of topography on the 660-km discontinuity , 1992, Nature.

[104]  T. Tanimoto,et al.  Global anisotropy in the upper mantle inferred from the regionalization of phase velocities , 1990 .

[105]  David J. Stevenson,et al.  Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle , 1993, Nature.

[106]  J. Woodhouse,et al.  Constraining Upper Mantle Anelasticity Using Surface Wave Amplitude Anomalies , 1993 .

[107]  A. Dziewoński,et al.  Acoustic imaging at the planetary scale , 1992 .

[108]  F. Pollitz Propagation of surface waves on a laterally heterogeneous earth: asymptotic solution of the two-dimensional wave equation , 1992 .

[109]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy. II - Analysis by the single-station method , 1984 .

[110]  B. Romanowicz,et al.  Modelling of coupled normal modes of the Earth: the spectral method , 1990 .

[111]  P. Stark,et al.  Reproducing Earth's kernel: Uncertainty of the shape of the core‐mantle boundary from PKP and PcP travel times , 1993 .

[112]  Eugene Herrin,et al.  Introduction to “1968 seismological tables for P phases” , 1968 .

[113]  Andrea Morelli,et al.  Anisotropy of the inner core inferred from PKIKP travel times , 1986 .

[114]  T. Tanimoto Long-wavelength S-wave velocity structure throughout the mantle , 1990 .

[115]  J. Woodhouse,et al.  A worldwide comparison of predicted S-wave delays from a three-dimensional upper mantle model with P-wave station corrections , 1985 .

[116]  Peter M. Shearer,et al.  Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases , 1991 .

[117]  Jeffrey Park Asymptotic coupled-mode expressions for multiplet amplitude anomalies and frequency shifts on an aspherical earth , 1987 .

[118]  Normal mode multiplet coupling on an aspherical, anelastic earth , 1992 .

[119]  T. Masters Low-frequency seismology and the three-dimensional structure of the Earth , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[120]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[121]  G. Masters,et al.  Observations of coupled spheroidal and toroidal modes , 1983 .

[122]  G. Masters,et al.  Low frequency seismology and three-dimensional structure — observational aspects , 1988 .

[123]  R. Peltier,et al.  Viscous flow models of global geophysical observables: 1. Forward problems , 1991 .

[124]  A. Rodgers,et al.  The trade-off between volumetric and topographic structure for seismic traveltimes: 660 km topography and mantle structure , 1994 .

[125]  G. Masters,et al.  Observably split multiplets—data analysis and interpretation in terms of large-scale aspherical structure , 1992 .

[126]  M. Richards,et al.  A geodynamic model of mantle density heterogeneity , 1993 .

[127]  B. Romanowicz,et al.  Reconsideration of the relations between S and P Station anomalies in North America , 1980 .

[128]  B. Romanowicz,et al.  First-order asymptotics for the eigenfrequencies of the earth and application to the retrieval of large-scale lateral variations of structure , 1986 .

[129]  Tatsuhiko Hara,et al.  Two efficient algorithms for iterative linearized inversion of seismic waveform data , 1993 .

[130]  G. Masters,et al.  Upper mantle structure from long-period differential traveltimes and free oscillation data , 1992 .

[131]  R. Snieder,et al.  Linearized scattering of surface waves on a spherical earth , 1987 .

[132]  Robert J. Geller,et al.  DSM complete synthetic seismograms : SH, spherically symmetric, case , 1994 .

[133]  P. Lognonné Normal modes and seismograms in an anelastic rotating Earth , 1991 .

[134]  G. Masters,et al.  Attenuation in the earth at low frequencies , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[135]  Roel Snieder,et al.  Large-scale waveform inversions of surface waves for lateral heterogeneity , 1988 .

[136]  J. Lévêque,et al.  Long-period Love wave overtone data in North America and the Pacific Ocean: new evidence for upper mantle anisotropy , 1983 .

[137]  F. Dahlen,et al.  Asymptotic normal modes of a laterally heterogeneous Earth: 2. Further results , 1986 .

[138]  Domenico Giardini,et al.  Evidence for inner core anisotropy from free oscillations , 1986 .

[139]  B. Hager,et al.  Long-wavelength variations in Earth’s geoid: physical models and dynamical implications , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[140]  Joseph S. Resovsky,et al.  Characterizing Long‐Period Seismic Effects of Long‐Wavelength Elastic and Anelastic Models , 1994 .

[141]  Don L. Anderson,et al.  Anisotropy and shear-velocity heterogeneities in the upper mantle , 1984 .

[142]  M. Randall A Revised Travel-Time Table for S , 1971 .

[143]  F. Dahlen Multiplet coupling and the calculation of synthetic long-period seismograms , 1987 .

[144]  T. Jordan,et al.  A study of mantle layering beneath the western Pacific , 1989 .

[145]  B. Romanowicz The upper mantle degree 2: Constraints and inferences from global mantle wave attenuation measurements , 1990 .

[146]  B. Hager Subducted slabs and the geoid: Constraints on mantle rheology and flow , 1983 .