Levee performance evaluation based on subjective probabilities

Abstract Levees are large alignment works on which only imperfect information are usually available. In this particular context, a probability-based model is suggested for evaluating the levee performance, taking into account imperfect data in a probabilistic format. Such a model will implement subjective probabilities that have been elicited by expert assessment to evaluate all criteria and uncertainties thereof. Based on a deterministic model of multicriteria aggregation and using Monte Carlo simulations, this will ultimately help build probability distributions for the performance indicator and for each levee section. The benefit of this model is to determine how much an evaluation may be trusted and to help decide which technical actions should be taken to improve a levee section performance. Résumé: Les digues sont des ouvrages à grands linéaires pour lesquels on ne dispose généralement que d’informations imparfaites. Dans ce contexte, on propose un modèle probabiliste d’évaluation de la performance des digues permettant la prise en compte des données imparfaites sous format probabiliste. Ce modèle met en œuvre des probabilités subjectives élicitées par jugement expert pour l’évaluation des critères et de leurs incertitudes. Sur la base d’un modèle déterministe d’agrégation multicritère et au moyen de simulations de Monte Carlo, il permet au final de construire des distributions de probabilité pour l’indicateur de performance et pour chaque tronçon de digue. Ce modèle présente les avantages d’apprécier la confiance qui peut être accordée à une évaluation et de guider le choix des actions techniques pour améliorer la performance d’un tronçon de digue.

[1]  Lionel A. Galway,et al.  Subjective Probability Distribution Elicitation in Cost Risk Analysis: A Review , 2007 .

[2]  V. L. Parsegian,et al.  NUCLEAR SCIENCE AND TECHNOLOGY , 1971 .

[3]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[4]  Howard Raiffa,et al.  Decision analysis: introductory lectures on choices under uncertainty. 1968. , 1969, M.D.Computing.

[5]  Anthony O'Hagan,et al.  Eliciting expert beliefs in substantial practical applications , 1998 .

[6]  Kerrie Mengersen,et al.  Expert elicitation and its interface with technology: a review with a view to designing elicitator , 2009, HiPC 2009.

[7]  John B. Kidd,et al.  Judgement under Uncertainty: Heuristics and Biasses , 1983 .

[8]  Marc Vuillet,et al.  Decision-making method for assessing performance of large levee alignment , 2012, J. Decis. Syst..

[9]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[10]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[11]  Max Henrion,et al.  Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis , 1990 .

[12]  Roger M. Cooke,et al.  Fifteen years of expert judgement at TUDelft , 2008 .

[13]  D. Boissier,et al.  Décision et incomplétude , 2000 .

[14]  Elsa Garavaglia,et al.  Reliability of porous materials: Two stochastic approaches , 2004 .

[15]  Anne B. Knol,et al.  Expert elicitation: methodological suggestions for its use in environmental health impact assessments , 2008 .

[16]  Jeremy E. Oakley,et al.  Uncertain Judgements: Eliciting Experts' Probabilities , 2006 .

[17]  Laurent Peyras,et al.  Vers l'adaptation aux Eurocodes de la justification des barrages-poids , 2006 .

[18]  Jeremy E. Oakley,et al.  Probability is perfect, but we can't elicit it perfectly , 2004, Reliab. Eng. Syst. Saf..

[19]  Laurent Peyras,et al.  Levee Performance Assessment Methods Integrated in a GIS to Support Planning Maintenance Actions , 2008 .

[20]  Patrice Meriaux,et al.  Le patrimoine de digues de protection contre les inondations en france d'après la base de données nationale des ouvrages , 2005 .

[21]  Laurent Peyras,et al.  Probability modelling of shear strength parameters of RCC gravity dams for reliability analysis of structural safety , 2009 .