Sequent Calculi for Nominal Tense Logics: A Step Towards Mechanization?

We define sequent-style calculi for nominal tense logics characterized by classes of modal frames that are first-order definable by certain Π10-formulae and Π20-formulae. The calculi are based on d'Agostino and Mondadori's calculus KE and therefore they admit a restricted cut-rule that is not eliminable. A nice computational property of the restriction is, for instance, that at any stage of the proof, only a finite number of potential cut-formulae needs to be taken under consideration. Although restrictions on the proof search (preserving completeness) are given in the paper and most of them are theoretically appealing, the use of those calculi for mechanization is however doubtful. Indeed, we present sequent calculi for fragments of classical logic that are syntactic variants of the sequent calculi for the nominal tense logics.

[1]  Rajeev Goré,et al.  A Labelled Sequent System for Tense Logic Kt , 1998, Australian Joint Conference on Artificial Intelligence.

[2]  Luis Fariñas del Cerro,et al.  Modal Tableaux with Propagation Rules and Structural Rules , 1997, Fundam. Informaticae.

[3]  Marcello D'Agostino,et al.  Investigations into the complexity of some propositional calculi , 1990 .

[4]  Alasdair Urquhart,et al.  Temporal Logic , 1971 .

[5]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[6]  Harald Ganzinger,et al.  A Resolution-Based Decision Procedure for Extensions of K4 , 1998, Advances in Modal Logic.

[7]  Miroslava Tzakova,et al.  Tableau Calculi for Hybrid Logics , 1999, TABLEAUX.

[8]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[9]  Jörg Hudelmaier,et al.  Improved Decision Procedures for the Modal Logics K, T, and S4 , 1995, CSL.

[10]  Stéphane Demri,et al.  Cut-Free Display Calculi for Nominal Tense Logics , 1999, TABLEAUX.

[11]  Beata Konikowska,et al.  A Logic for Reasoning about Relative Similarity , 1997, Stud Logica.

[12]  Patrick Blackburn,et al.  Internalizing labelled deduction , 2000, J. Log. Comput..

[13]  Patrick Blackburn,et al.  Nominal Tense Logic , 1992, Notre Dame J. Formal Log..

[14]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[15]  Zoran Ognjanovic A Tableau-Like Proof Procedure for Normal Modal Logics , 1994, Theor. Comput. Sci..

[16]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[17]  Marcello D'Agostino,et al.  The Taming of the Cut. Classical Refutations with Analytic Cut , 1994, J. Log. Comput..

[18]  Lincoln A. Wallen,et al.  Automated deduction in nonclassical logics , 1990 .

[19]  Luca Viganò,et al.  Natural Deduction for Non-Classical Logics , 1998, Stud Logica.

[20]  Bernhard Beckert,et al.  Free-Variable Tableaux for Propositional Modal Logics , 2001, Stud Logica.

[21]  Ian P. Gent Analytic proof systems for classical and modal logics of restricted quantification , 1993 .

[22]  Valentin Goranko,et al.  Modal logic with names , 1993, J. Philos. Log..

[23]  Guido Governatori Labelled Tableaux for Multi-Modal Logics , 1995, TABLEAUX.

[24]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[25]  George Boolos,et al.  Don't eliminate cut , 1984, J. Philos. Log..

[26]  Fabio Massacci,et al.  Strongly Analytic Tableaux for Normal Modal Logics , 1994, CADE.

[27]  II. Mathematisches Power and Weakness of the Modal Display Calculus , 1996 .

[28]  Bernhard Beckert,et al.  Free Variable Tableaux for Propositional Modal Logics , 1997, TABLEAUX.

[29]  Peter Øhrstrøm,et al.  Temporal Logic , 1994, Lecture Notes in Computer Science.

[30]  Luca Viganò,et al.  Labelled Propositional Modal Logics: Theory and Practice , 1997, J. Log. Comput..