Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle.

In the presence of functional adrenergic and cholinergic blockade, electrical field stimulation relaxes corpus cavernosum smooth muscle by unknown mechanisms. We report here that electrical field stimulation of isolated strips of rabbit corpus cavernosum promotes the endogenous formation and release of nitric oxide (NO), nitrite, and cyclic GMP. Corporal smooth muscle relaxation in response to electrical field stimulation, in the presence of guanethidine and atropine, was abolished by tetrodotoxin and potassium-induced depolarization, and was markedly inhibited by NG-nitro-L-arginine, NG-amino-L-arginine, oxyhemoglobin, and methylene blue, but was unaffected by indomethacin. The inhibitory effects of NG-substituted analogs of L-arginine were nearly completely reversed by addition of excess L-arginine but not D-arginine. Corporal smooth muscle relaxation elicited by electrical field stimulation was accompanied by rapid and marked increases in tissue levels of nitrite and cyclic GMP, and all responses were nearly abolished by NG-nitro-L-arginine. These observations indicate that penile erection may be mediated by NO generated in response to nonadrenergic-noncholinergic neurotransmission.

[1]  A. Gibson,et al.  l‐NG‐nitro arginine (l‐NOARG), a novel, l‐arginine‐reversible inhibitor of endothelium‐dependent vasodilatation in vitro , 1990, British journal of pharmacology.

[2]  L. Ignarro,et al.  NG-amino-L-arginine: a new potent antagonist of L-arginine-mediated endothelium-dependent relaxation. , 1990, Biochemical and biophysical research communications.

[3]  I. Goldstein,et al.  Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. , 1989, The New England journal of medicine.

[4]  R. Furchgott,et al.  The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine , 1980, Nature.

[5]  I. Goldstein,et al.  Regulation of adrenergic activity in penile corpus cavernosum. , 1989, The Journal of urology.

[6]  B. Altura,et al.  Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: role in lung vascular diseases. , 1981, Science.

[7]  O. Griffith,et al.  NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? , 1989, Biochemical and biophysical research communications.

[8]  L. Ignarro,et al.  Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. , 1981, The Journal of pharmacology and experimental therapeutics.

[9]  L. Ignarro,et al.  Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein. , 1987, Circulation research.

[10]  L. Ignarro,et al.  Biological Actions and Properties of Endothelium-Derived Nitric Oxide Formed and Released From Artery and Vein , 1989, Circulation research.

[11]  S. Moncada,et al.  L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. , 1988, Biochemical and biophysical research communications.

[12]  L. Ignarro,et al.  Endothelium‐Derived Relaxing Factor From Pulmonary Artery and Vein Possesses Pharmacologic and Chemical Properties Identical to Those of Nitric Oxide Radical , 1987, Circulation research.