Gray-scale structuring element decomposition

Efficient implementation of morphological operations requires the decomposition of structuring elements into the dilation of smaller structuring elements. Zhuang and Haralick (1986) presented a search algorithm to find optimal decompositions of structuring elements in binary morphology. We use the concepts of Top of a set and Umbra of a surface to extend this algorithm to find an optimal decomposition of any arbitrary gray-scale structuring element.

[1]  Xinhua Zhuang,et al.  Morphological structuring element decomposition , 1986 .

[2]  Frank Y. Shih,et al.  Threshold Decomposition of Gray-Scale Morphology into Binary Morphology , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Edward J. Coyle,et al.  Threshold decomposition of multidimensional ranked order operations , 1985 .

[4]  Paul D. Gader,et al.  Image Algebra Techniques for Parallel Image Processing , 1987, J. Parallel Distributed Comput..

[5]  Xinhua Zhuang Morphological structuring function decomposition , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Robert M. Haralick,et al.  Morphological decomposition of restricted domains: a vector space solution , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Ronald Jones,et al.  Algorithms for the Decomposition of Gray-Scale Morphological Operations , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Craig H. Richardson,et al.  A Lower Bound for Structuring Element Decompositions , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Jianning Xu Decomposition of Convex Polygonal Morphological Structuring Elements into Neighborhood Subsets , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Paul D. Gader,et al.  Separable decompositions and approximations of greyscale morphological templates , 1991, CVGIP Image Underst..