Responsive Photonic Crystals with Tunable Structural Color

Since colorimetric sensors can respond to environmental stimulus by the color change, they are widely concerned because of their low cost and low power consumed. A new material in colorimetric sensors called photonic crystals (PCs) was fabricated for sensing the external stimulus. PCs are composed of periodic ordered dielectrics nanostructures with photonic band gap. Different from dye, PCs can exhibit vivid structural color, which can be tailored by lattice spacing variation under the external stimulus. The PCs materials have important applications in the fields of display, sensors, anti-counterfeiting, and others. In this chapter, we will discuss strategies and mechanism for the fabrication of responsive PCs. Moreover, PCs materials demonstrate response characteristic under external stimuli, such as mechanical force, temperature, pH, ionic species, solvents, biomolecules, light, electrical or magnetic fields, and others. Challenge and perspective of this emerging area will also be discussed at the end of this chapter.

[1]  S. Asher,et al.  Intelligent Polymerized Crystalline Colloidal Arrays: Novel Chemical Sensor Materials , 1998 .

[2]  Howon Lee,et al.  Real-time optofluidic synthesis of magnetochromatic microspheres for reversible structural color patterning. , 2011, Small.

[3]  Zi-hui Meng,et al.  Two-dimensional inverse opal hydrogel for pH sensing. , 2014, The Analyst.

[4]  P. Vukusic,et al.  Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle. , 2007, Optics express.

[5]  Howon Lee,et al.  Colour-barcoded magnetic microparticles for multiplexed bioassays. , 2010, Nature materials.

[6]  H. Kawaguchi,et al.  Colored thin films prepared from hydrogel microspheres. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[7]  S. Asher,et al.  Vertical spreading of two-dimensional crystalline colloidal arrays , 2013 .

[8]  S. Asher,et al.  Two-dimensional array Debye ring diffraction protein recognition sensing. , 2013, Chemical communications.

[9]  L. Liang,et al.  A Combined Physical–Chemical Polymerization Process for Fabrication of Nanoparticle–Hydrogel Sensing Materials , 2012 .

[10]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[11]  Photoresponsive azobenzene photonic crystals , 2004 .

[12]  Sanford A. Asher,et al.  Photonic Crystal Chemical Sensors: pH and Ionic Strength , 2000 .

[13]  Lalgudi V. Natarajan,et al.  Holographic Formation of Electro‐Optical Polymer–Liquid Crystal Photonic Crystals , 2002 .

[14]  Jeremy J. Baumberg,et al.  Light‐Directed Writing of Chemically Tunable Narrow‐Band Holographic Sensors , 2014 .

[15]  John Ballato,et al.  Photonic Bandgap Composites , 2001 .

[16]  Sanford A. Asher,et al.  Superparamagnetic Photonic Crystals , 2001 .

[17]  Edwin L. Thomas,et al.  Bioinspired Electrochemically Tunable Block Copolymer Full Color Pixels , 2009 .

[18]  Jianping Gao,et al.  Response of inverse-opal hydrogels to alcohols , 2012 .

[19]  Jingxia Wang,et al.  Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization , 2011 .

[20]  Paul V. Braun,et al.  ast response photonic crystal pH sensor based on templated hoto-polymerized hydrogel inverse opal , 2010 .

[21]  J. Blyth,et al.  Glucose‐sensitive holographic sensors , 2004, Journal of molecular recognition : JMR.

[22]  Kazunori Kataoka,et al.  Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. , 2003, Angewandte Chemie.

[23]  Zhongze Gu,et al.  Quantum‐Dot‐Tagged Bioresponsive Hydrogel Suspension Array for Multiplex Label‐Free DNA Detection , 2010 .

[24]  D. Weitz,et al.  Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. , 2010, Small.

[25]  E. Thomas,et al.  Broad-wavelength-range chemically tunable block-copolymer photonic gels. , 2007, Nature materials.

[26]  Leung,et al.  Photonic band structure: The face-centered-cubic case employing nonspherical atoms. , 1991, Physical review letters.

[27]  Osamu Sato,et al.  Photo‐Reversible Regulation of Optical Stop Bands , 2001 .

[28]  Bai Yang,et al.  Biochemical-to-optical signal transduction by pH sensitive organic–inorganic hybrid Bragg stacks with a full color display , 2013 .

[29]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[30]  X. Duan,et al.  Inverse opal hydrogel sensor for the detection of pH and mercury ions , 2014 .

[31]  Masayoshi Watanabe,et al.  A thermally adjustable multicolor photochromic hydrogel. , 2007, Angewandte Chemie.

[32]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[33]  Jian Tang,et al.  Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures , 2012 .

[34]  T. Kurokawa,et al.  Rapid and Reversible Tuning of Structural Color of a Hydrogel over the Entire Visible Spectrum by Mechanical Stimulation , 2011 .

[35]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[36]  Ryan C Hayward,et al.  Photonic Multilayer Sensors from Photo‐Crosslinkable Polymer Films , 2012, Advanced materials.

[37]  G. Ozin,et al.  Electroactive inverse opal: a single material for all colors. , 2009, Angewandte Chemie.

[38]  Rongrong Hu,et al.  A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal. , 2015, Physical chemistry chemical physics : PCCP.

[39]  Seung-Man Yang,et al.  Dynamic Modulation of Photonic Bandgaps in Crystalline Colloidal Arrays Under Electric Field , 2010, Advanced materials.

[40]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[41]  O. Wolfbeis,et al.  Photonic crystals for chemical sensing and biosensing. , 2014, Angewandte Chemie.

[42]  Osamu Sato,et al.  Control of photonic band structure by molecular aggregates [14] , 2000 .

[43]  Geoffrey A Ozin,et al.  A step towards optically encoded silver release in 1D photonic crystals. , 2009, Small.

[44]  Zhaokun Yang,et al.  Free-standing molecularly imprinted photonic hydrogels based on β-cyclodextrin for the visual detection of L-tryptophan , 2015 .

[45]  A. Parker,et al.  Aphrodite's iridescence , 2001 .

[46]  Xiangsu Zhang,et al.  Fabrication of three-dimensional photonic crystals with two-beam holographic lithography. , 2006, Applied optics.

[47]  E. Thomas,et al.  Block Copolymer Photonic Gel for Mechanochromic Sensing , 2011, Advanced materials.

[48]  Thomas Hirsch,et al.  Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. , 2013, ACS applied materials & interfaces.

[49]  Masayoshi Watanabe,et al.  Tuning Structural Color Changes of Porous Thermosensitive Gels through Quantitative Adjustment of the Cross-Linker in Pre-gel Solutions , 2003 .

[50]  Zhongze Gu,et al.  Encoded Porous Beads for Label‐Free Multiplex Detection of Tumor Markers , 2009, Advanced materials.

[51]  Yu Huang,et al.  Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. , 2012, Journal of the American Chemical Society.

[52]  Serge Ravaine,et al.  Photonic crystal pH sensor containing a planar defect for fast and enhanced response , 2011 .

[53]  H. Föll,et al.  Formation Mechanism and Properties of Electrochemically Etched Trenches in n‐Type Silicon , 1990 .

[54]  J. Bibette Monodisperse ferrofluid emulsions , 1993 .

[55]  Saulius Juodkazis,et al.  Tailoring and characterization of photonic crystals , 2001 .

[56]  Jianping Ge,et al.  From Metastable Colloidal Crystalline Arrays to Fast Responsive Mechanochromic Photonic Gels: An Organic Gel for Deformation‐Based Display Panels , 2014 .

[57]  Shuichi Kinoshita,et al.  Photophysics of Structural Color in the Morpho Butterflies , 2002 .

[58]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[59]  Georg von Freymann,et al.  Mesoporous bragg stack color tunable sensors. , 2006, Nano letters.

[60]  Zhongze Gu,et al.  Bioinspired angle-independent photonic crystal colorimetric sensing. , 2013, Chemical communications.

[61]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[62]  Itsuro Kajiwara,et al.  Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels , 2014, Nature Communications.

[63]  S. Asher,et al.  Polymerized PolyHEMA photonic crystals: pH and ethanol sensor materials. , 2008, Journal of the American Chemical Society.

[64]  Jintao Zhu,et al.  Highly Sensitive Mechanochromic Photonic Hydrogels with Fast Reversibility and Mechanical Stability. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[65]  Xiao-Qiao Wang,et al.  Robust Mechanochromic Elastic One‐Dimensional Photonic Hydrogels for Touch Sensing and Flexible Displays , 2014 .

[66]  Sanford A. Asher,et al.  Photochemically Controlled Photonic Crystals , 2003 .

[67]  Younan Xia,et al.  Photonic Papers and Inks: Color Writing with Colorless Materials , 2003 .

[68]  Sanford A. Asher,et al.  Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials , 1996, Science.

[69]  Li‐Ping Yu,et al.  A novel platform for sensing an amino acid by integrating hydrogel photonic crystals with ternary complexes. , 2013, The Analyst.

[70]  Yadong Yin,et al.  Highly tunable superparamagnetic colloidal photonic crystals. , 2007, Angewandte Chemie.

[71]  Lei Liu,et al.  Self-Assembly Motif for Creating Submicron Periodic Materials. Polymerized Crystalline Colloidal Arrays , 1994 .

[72]  S. Asher,et al.  Two-dimensional photonic crystal surfactant detection. , 2012, Analytical chemistry.

[73]  Jianguo Guan,et al.  Free-standing, flexible thermochromic films based on one-dimensional magnetic photonic crystals , 2015 .

[74]  Howon Lee,et al.  SUPPLEMENTARY INFORMATION Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal , 2009 .

[75]  Jae-Hwang Lee,et al.  Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. , 2012, ACS nano.

[76]  M. P. Stoykovich,et al.  Label-free detection of missense mutations and methylation differences in the p53 gene using optically diffracting hydrogels. , 2015, The Analyst.

[77]  Lars Chittka,et al.  Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators , 2009, Science.

[78]  Paul V. Braun,et al.  Tunable Inverse Opal Hydrogel pH Sensors , 2003 .

[79]  Lei Jiang,et al.  The Dry‐Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography , 2007 .

[80]  Tierui Zhang,et al.  Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[81]  E. Thomas,et al.  Dynamic Changes in Structural Color of a Lamellar Block Copolymer Photonic Gel during Solvent Evaporation , 2013 .

[82]  Ying Guan,et al.  New polymerized crystalline colloidal array for glucose sensing. , 2009, Chemical communications.

[83]  Ludovico Cademartiri,et al.  From colour fingerprinting to the control of photoluminescence in elastic photonic crystals , 2006 .

[84]  B. Lotsch,et al.  Stimuli-responsive 2D polyelectrolyte photonic crystals for optically encoded pH sensing. , 2012, Chemical communications.

[85]  Tsutomu Sawada,et al.  Photonic rubber sheets with tunable color by elastic deformation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[86]  M. Watanabe,et al.  Controlled Multistructural Color of a Gel Membrane , 2003 .

[87]  Xiaoling Yang,et al.  Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel , 2012 .

[88]  M. Watanabe,et al.  Preparations and optical properties of ordered arrays of submicron gel particles: interconnected state and trapped state. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[89]  Luling Wang,et al.  2-D array photonic crystal sensing motif. , 2011, Journal of the American Chemical Society.

[90]  Andrew R. Parker,et al.  Structural colour: Opal analogue discovered in a weevil , 2003, Nature.

[91]  Guangzhao Zhang,et al.  Electrically tunable block copolymer photonic crystals with a full color display , 2009 .

[92]  E. Thomas,et al.  Defects, Solvent Quality, and Photonic Response in Lamellar Block Copolymer Gels , 2014 .

[93]  Epoxide functionalized polymerized crystalline colloidal arrays , 2005 .

[94]  Ming Lin,et al.  Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids , 2002, Analytical and bioanalytical chemistry.

[95]  Jialei Bai,et al.  A novel opal closest-packing photonic crystal for naked-eye glucose detection. , 2014, Small.